

AVALIAÇÃO DE PROPOSTAS GEOMORFOLÓGICAS DO MODELO DE NASH A PARTIR DE DIFERENTES FONTES DE RELEVO NA ESTIMATIVA DE CHEIAS

MAÍRA MARTIM DE MOURA¹; ZANDRA ALMEIDA DA CUNHA², FELÍCIO CASSALHO³; FABRÍCIO DA SILVA TERRA⁴; SAMUEL BESKOW⁵

> ¹Discente UFPel/PPG Recursos Hídricos - martimdemoura @gmail.com ²Discente UFPel/Engenharia Hídrica – zcunha.enghidrica @gmail.com ³Discente UFPel/Engenharia Hídrica – felicioufpel @gmail.com ⁴Docente UFPel/Engenharia Hídrica – terra.fabricio @gmail.com ⁵Docente UFPel/Engenharia Hídrica – samuelbeskow @gmail.com

1. INTRODUÇÃO

Durante o planejamento e desenvolvimento dos recursos hídricos, um dos grandes interesses é o estudo de cheias em bacias hidrográficas, permitindo a quantificação da vazão máxima ou da sequência temporal de vazões (hidrograma) oriundas de um ou mais eventos de chuva (ZAKIZADEH; MALEKINEZHAD, 2015). Nesse contexto, a existência de séries históricas torna-se essencial para gestão de recursos hídricos. Entretanto, no Brasil existe um número insuficiente de seções de controle com monitoramento fluviométrico (BESKOW et al., 2013), tornando a modelagem hidrológica de cheias fundamental.

O hidrograma unitário (HU), proposto por Sherman em 1932 é uma teoria importante para a modelagem do escoamento superficial direto (ESD) e tem motivado o desenvolvimento de vários modelos conceituais, como o Hidrograma Unitário Instantâneo (HUI), proposto por Clark em 1945. Um dos modelos amplamente utilizados é o HUI de Nash (HUIN), contudo, ele demanda informações de redes de monitoramento hidrológico. Neste contexto, estudos científicos têm sugerido aproximações para a derivação dos parâmetros do HUIN a partir de características geomorfológicas da bacia e de sua rede de drenagem. Todavia, são escassos os estudos científicos que avaliam a acurácia destas propostas, bem como a influência de diferentes fontes e escalas de informações do relevo sobre a determinação dos parâmetros de cada proposta geomorfológica.

O Modelo Digital de Elevação (MDE) é a principal informação no processo de caracterização geomorfológica de bacias hidrográficas. O MDE pode ser obtido por meio da interpolação de curvas de nível de cartas topográficas, interferometria de radar (e.g. Shuttle Radar Topographic Mission - SRTM) e imagens estéreo-ópticas (e.g. sensor Advanced Spaceborne Emission and Reflection Radiometer - ASTER). SHARMA; TIWARI (2014) ressaltam que os MDEs podem apresentar incertezas devido aos métodos de coleta dos pontos de elevação e/ou aos princípios usados para sua geração, exercendo influência sobre a extração da rede de drenagem e a caracterização geomorfológica de bacias hidrográficas.

Diante do exposto, o objetivo do trabalho foi investigar o efeito da utilização de diferentes MDEs e resoluções espaciais na caracterização de bacias hidrográficas, bem como suas implicações em diferentes propostas geomorfológicas para o HUIN.

2. METODOLOGIA

A bacia hidrográfica do arroio Cadeia (BHAC) está localizada no sul do estado do Rio Grande do Sul, sendo o arroio Cadeia (-52,54°, -31,55°), um dos principais afluentes do arroio Pelotas, cuja bacia hidrográfica é monitorada pelo Grupo de

Pesquisa em Hidrologia e Modelagem Hidrológica em Bacias Hidrográficas/CNPq da UFPel.

O modelo de HUI proposto por NASH (1957) considera uma precipitação uniforme ao longo da bacia, cuja propagação até a seção de controle simula n reservatórios lineares em cascata com tempo médio de esvaziamento representado pelo parâmetro k. Foram analisadas quatro diferentes propostas geomorfológicas (P_{Geo}) para a estimativa dos parâmetros do HUIN: NASH (1960) (P₁), WU (1963) (P₂), ROSSO (1984) (P₃) e BHAGWAT et al. (2011) (P₄). As P₁ e P₂ demandam a área da bacia (A, em mi²) e o comprimento do curso d'água principal (L, em mi), além da declividade média da bacia (S) e a declividade do curso d'água principal (S₃), ambas em partes por 10.000, respectivamente para as P₁ e P₂. As propostas P₃ e P₄ utilizam as médias das razões de bifurcação (R_B), comprimento (R_L) e área (R_A), o comprimento do curso de maior ordem (L_{Ω}, em km) e a velocidade do escoamento (v, em m.s⁻¹). A determinação de v seguiu os preceitos recomendados por BHAGWAT et al. (2011). Foram selecionados 10 eventos chuva-vazão, compreendendo ao período de 2015 a 2017, com Pe variando de 1,4 a 24,2 mm e QESD.MÁX de 6,3 a 51,9 m³/s. Para isso, foram utilizados dados de 5 estações pluviométricas e 2 estações pluvio-fluviométricas instaladas no interior ou próximas da BHAC.

Foram utilizadas como fontes para a obtenção dos MDEs os seguintes produtos: a) SRTM com resoluções espaciais de 30m e 90m; b) SRTM de 90m convertidas para 30 m por krigagem, disponibilizadas no banco de dados TOPODATA; c) ASTER com resolução espacial de 30m e d) cartas topográficas do exército vetorizadas na escala 1:50.000 e interpoladas em células de 25m. Todos os MDEs foram georreferenciados para o sistema de projeção cartográfica UTM fuso 22S e datum SIRGAS 2000.

A delimitação das bacias foi realizada de forma automática no software ArcGIS 10.1 e os atributos extraídos do relevo foram: a) área de drenagem; b) declividade média da bacia e c) declividade e comprimento do curso d'água principal. As hidrografias extraídas numericamente foram organizadas de forma hierárquica (STRAHLER, 1952) e, posteriormente, foram obtidos os valores médios de R_B e R_L (HORTON, 1945), e da R_A (SCHUMM, 1956).

A análise de desempenho das P_{GEO} do HUIN, com base nos eventos monitorados, se deu pelo coeficiente de Nash e Sutcliffe (C_{NS}) (NASH; SUTCLIFFE, 1970) e erro relativo na estimativa da vazão de pico (ER_{Qp}). Conforme MORIASI et al. (2007), o C_{NS} pode ser classificado da seguinte forma: C_{NS} > 0,65: muito bom; 0,54< C_{NS}< 0,65: bom; 0,50< C_{NS}< 0,54: satisfatório e C_{NS}< 0,50: insatisfatório. Para o ER_{Qp}, VAN LIEW et al. (2007) apresentaram a seguinte classificação: $|ER_{Qp}| <$ 10%: muito bom; 10% < $|ER_{Qp}| <$ 15%: bom; 15% < $|ER_{Qp}| <$ 25%: satisfatório e $|ER_{Qp}| >$ 25%: inadequado.

3. RESULTADOS E DISCUSSÃO

Na Tabela 1 encontram-se as variáveis geomorfológicas utilizadas para a obtenção dos parâmetros do HUIN, para as quatro propostas estudadas e os diferentes MDEs utilizados, enquanto que, na Tabela 2, encontram-se os valores mínimos, máximos e médios para as estatísticas utilizadas.

Fontes	Resolução	A (km²)	L (km)	L_{Ω} (km)	R_B	R_L	R _A	S (1/10.000)	S ₃ (1/10.000)
CARTAS	25 m	121,33	25,21	17,58	3,96	3,16	2,86	1108,8	66,0
SRTM 30	30 m	135,78	23,87	16,76	4,12	2,71	2,47	1194,0	60,7
SRTM 90	90 m	135,83	23,81	16,67	4,08	3,18	2,67	1161,0	55,2
TOPODATA	30 m	135,55	23,27	16,86	3,95	2,69	2,36	1077,0	56,3
ASTER	30 m	135,67	23,80	17,03	4,31	3,09	2,79	1260,0	54,2

Tabela 1 – Variáveis fisiográficas utilizadas para a modelagem na BHAC

Tabela 2 – Variação das estatísticas obtidas e suas respectivas médias, considerando as diferentes combinações para MDE e P_{Geo}

P_{Geo}	MDE	C _{NS}		ER _{Qp} (%)			D	MDE	C _{NS}			ER _{Qp} (%)			
		Mín	Máx	Méd	Mín	Máx	Méd	Geo	NIDE	Mín	Máx	Méd	Mín	Máx	Méd
P ₁	CARTAS	0,21	0,81	0,52	20,2	54,8	42,8	P ₃	CARTAS	0,36	0,68	0,52	1,1	42,1	26,9
	SRTM30	0,20	0,80	0,51	20,9	55,4	43,5		SRTM30	0,18	0,55	0,36	1,7	42,9	28,0
	SRTM90	0,20	0,79	0,50	21,3	55,7	44,0		SRTM90	0,34	0,67	0,51	0,6	39,0	23,5
	TOPODATA	0,18	0,77	0,48	22,2	56,6	45,1		TOPODATA	0,17	0,55	0,35	2,1	43,5	28,6
	ASTER	0,22	0,82	0,52	20,2	54,8	42,7		ASTER	0,29	0,62	0,46	0,6	40,9	25,6
P ₂	CARTAS	0,57	0,94	0,78	1,7	46,4	19,6	P ₄	CARTAS	0,38	0,69	0,54	1,2	42,1	26,9
	SRTM30	0,42	0,96	0,77	0,9	22,2	11,0		SRTM30	0,19	0,56	0,37	1,7	42,9	28,0
	SRTM90	0,36	0,96	0,74	3,1	28,9	14,8		SRTM90	0,35	0,68	0,53	0,5	39,1	23,6
	TOPODATA	0,35	0,96	0,72	3,7	29,5	15,3		TOPODATA	0,18	0,55	0,36	2,1	43,5	28,6
	ASTER	0,36	0,96	0,73	4,5	30,2	15,9		ASTER	0,31	0,63	0,48	0,7	41,0	25,7

É possível observar que, as estatísticas variaram consideravelmente entre as propostas geomorfológicas e entre os MDEs, tanto para o C_{NS} como para o ER_{Qp} . De acordo com os valores médios das estatísticas, a P_2 e o MDE CARTAS foram a proposta e a fonte de informações do relevo com melhor desempenho, respectivamente. Em alguns eventos, o baixo desempenho do C_{NS} e o alto desempenho do ER_{Qp} se devem ao fato de os hidrogramas estimados apresentarem defasagem de tempo entre as vazões de pico, com valores máximos aproximados.

Com base no C_{NS} , a P_1 foi a que apresentou o maior número de eventos ajustados como muito bom ou bom, tendo somente um dos eventos estudados enquadrado como insatisfatório. Cerca da metade dos valores obtidos para P_3 e P_4 foram enquadrados como insatisfatórios, com apenas 1 evento inteiramente enquadrado como muito bom ou bom. A P_1 variou entre os eventos, mas não entre as fontes, com 2 eventos enquadrados como muito bom, 1 como bom e 4 como insatisfatório.

O desempenho dos modelos com base no ER_{Qp} diferiu em relação ao C_{NS} . A P₁ teve somente 1 evento enquadrado como satisfatório e todos os demais, como insatisfatórios, enquanto a P₃ e a P₄ tiveram 1 evento enquadrado como satisfatório e 6 eventos como insatisfatório. A P₂ obteve o melhor desempenho, com alguns eventos/fontes enquadrados como insatisfatórios e os demais variando entre muito bom e satisfatório.

4. CONCLUSÕES

Os MDEs apresentaram grande influência no processo de delimitação e caracterização da bacia hidrográfica. Apesar de P₁ e P₂ serem de mais fácil aplicação em virtude dos parâmetros e de não dependerem de informação da *v*,

apresentaram superioridade em relação às demais, as quais são baseadas no estudo de RODRIGUEZ-ITURBEZ; VALDES (1979).

Mais bacias hidrográficas devem ser utilizadas para este fim no intuito de verificar se o comportamento dos modelos e dos MDEs utilizados permanecerão os mesmos ou apresentarão algumas limitações. A utilização de algumas formulações geormorfológicas como a P₁ e a P₂, nunca antes aplicadas para a região em análise, e os bons resultados obtidos, podem servir de subsídio para a composição de sistemas simplificados de monitoramento e alerta de desastres naturais por inundações.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BHAGWAT, T. N.; SHETTY, A.; HEGDE, V. S. Spatial variation in draiange characteristics and geomorphic instantaneus unit hydrograph (GIUH); implications for watershed management - A case study of the Varada River basin, Northern Karnataka. **Catena**, v. 87, p. 52-59, 2011.

BESKOW, S.; NORTON, L. D.; MELLO, C. R. Hydrological prediction in a tropical watershed dominated by Oxisols using a distributed hydrological model. Water Resources Management, v. 27, n. 2, p. 341–363, 2013.

HORTON, R. E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, **Bulletin of the Geological Society of America**, v. 56, p. 275-370, 1945.

MORIASI, D. N.; ARNOLD, J. G.; VAN LIEW, M. W.; BINGNER, R. L.; HARMEL, R. D.; VEITH, T. L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulation. **Transactions of the ASABE**, v. 50, p. 885-900, 2007.

NASH, J. E. The form of the instantaneous unit hydrograph. **International Association of Scientific Hydrology**, v. 45, n. 3, p. 114-121, 1957.

NASH, J. E. A unit hydrograph study, with particular reference to British Catchments. **Proceedings of the Institution of Civil Engineers**, v.17, n. 3, p. 249-282, 1960.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models I: a discussion of principles. **Journal of Hydrology**, v. 10, n. 3, p. 282-298, 1970.

RODRIGUEZ-ITURBE, I.; VALDÉS, J. B. The Geomorphologic Sctructure of Hydrologic Response. **Water Resources Research**, v. 15, n. 6, p. 1409-1420, 1979.

ROSSO, R. Nash Model Relation to Horton Order Ratios. Water Resources Research, v. 20, n. 7, p. 914-920, 1984.

SCHUMM, S. A. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. **Bulletin of the Geological Society of America**, 67, p. 697-646, 1956.

SHARMA, A.; TIWARI, K. N. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level. **Journal of Hydrology**, v. 519, p. 1394–1404, 2014.

STRAHLER, A. N. Dynamic basis of geomorphology. **Bulletin of the Geological Society of America**, v. 63, p. 923 – 938, 1952.

VAN LIEW, M. W. et al. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. **Journal of Hydrological Engineering**, v. 12, n. 2, p. 173-189, 2007.

ZAKIZADEH, F.; MALEKINEZHAD, H. Comparison of Methods for Estimation of Flood Hydrograph Characteristics. **Russian Meteorology and Hydrology**, v. 40, n. 12, p. 828-837, 2015.

WU, I. Design hydrographs for small watersheds in Indiana. Journal of the Hydraulics Division, v. 89, n. 6, p. 35-66, 1963.