

PROPOSTAS BASEADAS EM ALGORITMOS GENÉTICOS PARA OTIMIZAÇÃO DE PARÂMETROS DE CURVAS INTENSIDADE-DURAÇÃO-FREQUÊNCIA (IDF)

ZANDRA ALMEIDA DA CUNHA¹; MARCELLE MARTINS VARGAS²; MAÍRA MARTIM DE MOURA³; TAMARA LEITZKE CALDEIRA⁴; SAMUEL BESKOW⁵

¹Universidade Federal de Pelotas (UFPel) – zandraacunha @gmail.com
²Universidade Federal de Pelotas (UFPel) – marcellevarg @gmail.com
³Universidade Federal de Pelotas (UFPel) – martimdemoura @gmail.com
⁴Universidade Federal de Pelotas (UFPel) – tamaraleitzkecaldeira @ufpel.edu.br
⁵Universidade Federal de Pelotas (UFPel) – samuelbeskow@gmail.com

1. INTRODUÇÃO

A curva Intensidade-Duração-Frequência (IDF) é uma das ferramentas mais utilizadas e de grande relevância para a gestão dos recursos hídricos, visto que o estudo de precipitações extremas permite a estimativa das vazões de projeto para dimensionamento de obras de engenharia. As informações necessárias para a determinação das relações IDF são dados provenientes de monitoramento hidrológico (ALEMAW; CHAOKA, 2016). No entanto, as informações provenientes do monitoramento existente são na grande maioria das vezes disponibilizadas em escala temporal diária, tornando-se necessário lançar mão de métodos para discretizar essas precipitações em intervalos de tempo subdiários.

Um dos métodos tradicionalmente utilizado para a obtenção da precipitação em intervalos de tempo subdiários é o método da desagregação proposto por CETESB (1979). Este método traz relações para conversão das precipitações máximas diárias observadas em intervalos de diferentes durações, sendo necessário o ajuste de funções de distribuições de probabilidades (FDP) para representar a frequência dos valores observados de forma satisfatória.

Após uma FDP ser ajustada à série histórica de precipitação máxima diária anual (P_{MDA}), a acurácia dos parâmetros da IDF é dependente do método de otimização utilizado. O método comumente aplicado é o de regressão múltipla não-linear associada ao método de mínimos quadrados, o qual apresenta bons resultados, no entanto, apresenta dificuldades associadas à inicialização dos parâmetros da IDF e à experiência necessária por parte do usuário. Neste sentido, a utilização de algoritmos de otimização que busquem ótimos globais minimiza as desvantagens supracitadas acerca do método tradicional supracitado. Dentre os algoritmos disponíveis na literatura, o *Non-dominated Sorting Genetic Algorithm II* (NSGA-II) é o comumente utilizado para otimização multiobjetivo (AUGER et al., 2016), enquanto que, o Nelder-Mead (NM) é frequentemente utilizado para resolver problemas de otimização irrestrita (NELDER; MEAD, 1965), e o Shuffled Complex Evolution (SCE-UA) é mais utilizado para abordagens determinísticas e probabilísticas (DUAN et al., 1994).

Frente ao exposto, este estudo propõe uma abordagem inicial para a elaboração de uma ferramenta computacional que objetiva otimizar de forma automática os parâmetros da curva IDF, descartando a dependência de conhecimento acerca dos limites dos parâmetros por parte do usuário.

2. METODOLOGIA

Foram utilizadas séries de precipitação de 112 postos pluviométricos de responsabilidade da Agência Nacional de Águas (ANA), selecionados de maneira

a representar a heterogeneidade da precipitação das cinco regiões brasileiras e que atendessem aos critérios de falhas pré-estabelecidos, e.g. 31 dias de falhas e um mínimo de 10 anos de dados. As séries de P_{MDA} foram constituídas com o auxílio do software *System of Hydrological Data Acquisition and Analysis* (SYHDA) (VARGAS et al., 2019).

O procedimento de ajuste dos parâmetros para as curvas IDF consistiu em três etapas (KOUTSOYIANNIS et al., 1998): i) ajuste de uma FDP; ii) cálculo das intensidades de precipitação para um conjunto de tempo de retorno (TR), utilizando as FDPs da etapa i; e iii) obtenção das curvas IDF.

AS FDPs Log Normal de 2 parâmetros (LN-2P), Gumbel para Máximos e Generalizada de Valores Extremos (GEV) foram empregadas neste estudo e avaliadas de acordo com o teste de aderência de Anderson-Darling (AD) (ANDERSON; DARLING, 1954) ao nível de 5% de significância. Para estimar os parâmetros das FDPs foi utilizado o Método da Máxima Verossimilhança (MMV). O processamento das metodologias foi realizado em ambiente MATLAB (MATRIX LABORATORY, 2018), utilizando funções nativas.

Os TRs utilizados foram de 2, 5, 10, 20, 50 e 100 anos e durações (D) de 5, 10, 15, 20, 30, 60, 360 e 1440 minutos. A desagregação da precipitação diária tomou como base as constantes de desagregação propostas por CETESB (1979). Os parâmetros da IDF foram otimizados tendo como base a Equação 1.

$$i = \frac{a \cdot TR^b}{(c+D)^d} \tag{01}$$

Sendo: i a intensidade média (mm.h⁻¹), TR o tempo de retorno (anos), D a duração (min) e a, b, c e d os parâmetros da IDF.

Para a otimização dos parâmetros da IDF foi utilizado como função objetivo o coeficiente de Nash-Sutcliffe (C_{NS}) (NASH; SUTCLIFFE, 1970), seguindo classificação de Motovilov et al. (1999). O desempenho foi computado a partir da estatística raiz quadrada do erro quadrático médio (RMSE). A otimização da função objetivo C_{NS} foi realizada de acordo com ilustrado na Figura 1, por meio da utilização no ambiente do MATLAB de: i) regressão não-linear de Levenberg-Marquardt em sua função nativa *Isqnonlin*; ii) algoritmo NSGA-II, em sua versão na função nativa *gamultiobj*; iii) algoritmo NM (NELDER; MEAD, 1965); e iv) algoritmo SCE-UA (DUAN et al., 1994).



Figura 1 – Fluxograma compreendendo todas as etapas realizadas para a calibração dos parâmetros da IDF.

Foi necessário estipular os limites inferior e superior dos parâmetros da IDF para a otimização com o NSGA-II e o SCE-UA, e os valores iniciais para o LM-MMQ

e NM. Os valores limites foram obtidos na literatura, tomando como base trabalhos que obtiveram parâmetros da IDF para diferentes locais do Brasil. Dada a flutuação dos valores dos parâmetros ao longo do território brasileiro, a otimização dos mesmos foi realizada sob dois cenários: Cenário I, onde foram considerados os mesmos limites para todas as regiões do Brasil; e o Cenário II, onde os limites foram os encontrados para cada região.

3. RESULTADOS E DISCUSSÃO

Ao analisar o ajuste das séries hidrológicas às distribuições de probabilidade, de acordo com o teste AD, verificou-se que 85 séries de P_{MDA} (79%) se ajustaram à FDP GEV, 26 séries (23,2%) se ajustaram à LN-2P e apenas 1 série (0,9%) à Gumbel. Na Tabela 1, é possível observar as estatísticas de ajuste dos parâmetros médios obtidos para a IDF, por região, nos cenários I e II para cada método de otimização.

Região/ Método		Cenário I		Cenário II		Região/		Cenário I		Cenário II	
		C _{NS}	RMSE	C_{NS}	RMSE	Método		C _{NS}	RMSE	C_{NS}	RMSE
Norte	NDGA-II	0,98	13,25	0,94	34,76	Sudeste	NDGA-II	0,98	7,85	0,93	11,53
	SCE-UA	1,00	7,65	0,95	33,11		SCE-UA	1,00	2,83	0,96	7,40
	NM	0,94	21,03	0,90	27,18		NM	0,95	13,68	0,95	12,44
	LM-MMQ	0,00	107,93	0,00	107,89		LM-MMQ	0,00	58,27	0,00	58,22
Nordeste	NDGA-II	0,98	7,77	-0,04	34,80	Sul	NDGA-II	0,97	8,18	1,00	3,63
	SCE-UA	1,00	3,15	0,03	33,68		SCE-UA	1,00	2,61	1,00	2,62
	NM	0,94	15,46	0,97	9,28		NM	0,94	13,31	0,95	11,18
	LM-MMQ	0,00	67,42	0,00	67,33		LM-MMQ	0,00	57,02	0,00	56,99
Centro-Oeste	NDGA-II	0,97	8,85	0,98	4,89						
	SCE-UA	1,00	2,47	0,98	4,54						
	NM	0,95	11,89	0,99	5,60						
Cer	LM-MMQ	0,00	53,05	0,00	53,02						

Tabela 1 – Estatísticas médias para os Cenários I e II de otimização dos parâmetros da IDF

Com base nos resultados obtidos para o Cenário I, pode-se observar que o algoritmo SCE-UA resultou nas melhores estatísticas, visto que todos os valores de C_{NS} foram enquadrados como "bom" e o valor de RMSE médio entre as regiões foi igual a 3,7mm·h⁻¹. Para o NSGA-II e o NM, os valores das estatísticas também mostraram resultados satisfatórios, sendo os valores de C_{NS} enquadrados como "bom" e os valores médios de RMSE entre as regiões de 7,3mm·h⁻¹ e 9,2mm·h⁻¹, respectivamente. Contudo, o LM-MMQ resultou nas piores estatísticas, tendo todos os valores de C_{NS} enquadrados como "insatisfatórios" e um valor alto de RMSE médio entre as regiões, igual a 68,7mm·h⁻¹.

Para o Cenário II, o comportamento das estatísticas variou de acordo com os algoritmos, no entanto, o LM-MMQ continuou apresentando desempenho insatisfatório para todas as regiões. De acordo com Campos et al. (2014), os resultados obtidos pelo LM-MMQ se devem ao fato de que, geralmente, a calibração com regressão não-linear necessita conhecimento do usuário acerca dos valores inicias adequados para cada parâmetro, ao passo que, para outros algoritmos, como o SCE-UA, basta inserir um limite amplo para os parâmetros que o método encontrará uma solução representativa. Foram verificados os maiores valores médios de RMSE para as regiões Norte e Nordeste com a utilização dos

algoritmos NSGA-II e SCE-UA. Para as demais regiões, os valores de RMSE foram menores, destacando melhor desempenho do algoritmo SCE-UA.

4. CONCLUSÕES

Algoritmos de otimização que não são dependentes dos valores iniciais, e. g. NSGA-II e SCE-UA, são uma alternativa metodológica para a estimativa dos parâmetros da IDF. O algoritmo SCE-UA permitiu melhor otimização dos parâmetros para ambos os cenários analisados, enquanto que, o LM-MMQ não foi satisfatório. O algoritmo LM-MMQ pode ser utilizado com sucesso na otimização dos parâmetros da IDF, entretanto, os valores iniciais devem ser bem estabelecidos.

Visando à elaboração de uma ferramenta automática para otimização dos parâmetros da IDF, sem a necessidade do conhecimento dos valores iniciais por parte dos usuários, a utilização dos algoritmos LM-MMQ e NM não se mostram adequadas. Todavia, a utilização de algoritmos como o NSGA-II e o SCE-UA pode ser uma boa alternativa metodológica.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALEMAW, B. F.; CHAOKA, R. T. Regionalization of Rainfall Intensity-Duration-Frequency (IDF) curves in Botswana. **Journal of Water Resource and Protection**, v. 8, n.12, pp. 1128-1144, 2016.

ANDERSON, T. W.; DARLING, D. A. A test of goodness of fit. **Journal of the American Statistical Association**, v. 49, n. 268, pp. 756-76, 1954.

AUGER, A.; BROCKHOFF, D.; HANSEN, N.; TUŠAR, D.; TUŠAR, T.; WAGNER, T. Benchmarking MATLAB's gamultiobj (NSGA-II) on the Bi-objective BBOB-2016 Test Suite. In GECCO 2016-Genetic and Evolutionary Computation Conference (pp. 1233-1239). ACM, 2016.

CAMPOS, A. R.; SANTOS, G. G.; SILVA, J. B. L.; IRENE FILHO, J.; LOURA, D. S. Equações de intensidade-duração-frequência de precipitaçãos para o estado do Piauí. **Revista Ciência Agronômica**, v. 45, n.3, pp. 488-498, 2014.

CETESB – Companhia de Tecnologia de Saneamento Ambiental. Drenagem urbana – Manual de Projeto. 3 ed. São Paulo. 464 p, 1979.

DUAN, Q.; SOROOSHIAN, S.; GUPTA, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. **Journal of hydrology**, v. 158, n. 3-4, pp. 265-284, 1994.

MATLAB. The MathWorks, Inc., Natick, Massachusetts, United States, R2018b, 2018.

MOTOVILOV, Y. G.; GOTTSCHALK, L.; ENGELAND, K.; RODHE, A. Validation of a distributed hydrological model against spatial observations. **Agricultural and Forest Meteorology**, v. 98, pp. 257-277, 1999.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models I: a discussion of principles. **Journal of Hydrology**, v. 10, n.3, pp. 282- 298, 1970.

NELDER, J.A.; MEAD, R. A Simplex method for function minimization. **The Computer Journal**, v. 7, pp. 308-313, 1965.

VARGAS, M. M.; BESKOW, S.; CALDEIRA, T. L.; CORRÊA, L. D. L.; CUNHA, Z. A. D. SYHDA–System of Hydrological Data Acquisition and Analysis. **Revista Brasileira de Recursos Hídricos** 24, 2019.