

VACINA DE DNA COM LipL32 PROTEGE HAMSTERS CONTRA A LEPTOSPIROSE LETAL

NAJARA BITTENCOURT¹; KARINA COLONETTI²; AMILTON SEIXAS NETO³; ANDREIA NOBRE ANCIUTI⁴; ÉVERTON FAGONDE DA SILVA⁵

¹Universidade Federal de Pelotas, Graduação em Ciências Biológicas - najaracb@gmail.com
²Universidade Federal de Pelotas, Pós-graduação em Biotecnologia - karinacolonetti@hotmail.com
³ Universidade Federal de Pelotas, Pós-graduação em Biotecnologia - amiltonseixas@gmail.com
⁴ Universidade Federal de Pelotas, Graduação em Medicina Veterinária- andreianciuti@hotmail.com
⁵ Universidade Federal de Pelotas, Departamento de Veterinária Preventiva - fagondee@gmail.com

1. INTRODUÇÃO

A leptospirose é uma zoonose causada por espécies patogênicas do gênero *Leptospira* (LEVETT, 2001). Até o momento cerca de 300 sorovares patogênicos de *Leptospira* foram identificados (HARTSKEERL; COLLARES-PEREIRA; ELLIS, 2011). A transmissão para o hospedeiro suscetível ocorre através do contado direto ou indireto com a urina de animais infectados (ADLER; MOCTEZUMA, 2010).

Atualmente, as vacinas disponíveis são constituídas de leptospiras inativadas e adjuvante, chamadas bacterinas (FAINE et al., 1999). Suas principais limitações residem no fato de induzirem proteção de curta duração apenas contra os sorovares presentes na formulação e apresentarem reações adversas após a administração (LEVETT, 2001). Devido a essas limitações, novas estratégias vêm sendo desenvolvidas para a leptospirose e outras enfermidades, como o estudo de vacinas com subunidades proteicas (ADLER e MOCTEZUMA, 2010) e vacinas de DNA (CUI, 2005). O princípio "prime-boost" é baseado em imunizações múltiplas, sejam elas homólogas onde o 'prime' é semelhante ao 'boost', ou heterólogas onde o 'boost' difere do 'prime' (LU, 2009).

Desta forma, o objetivo deste estudo foi testar a capacidade imunoprotetora de vacinas de DNA em hamsters, utilizando dois genes que codificam para duas proteínas importantes na patogênese da leptospirose, avaliando a colonização dos principais órgãos dos animais.

2. METODOLOGIA

Para a construção das vacinas e obtenção de bacterinas, utilizou-se *Leptospira interrogans cepa* FIOCRUZ L1-130, a qual foi cultivada em meio EMJH (Difco Laboratories®) enriquecido com 10% de suplemento comercial (Difco®) em estufa bacteriológica. Os cultivos foram estimados por contagem em câmara de Petroff-Hausser, e a bacterina foi obtida por inativação térmica, centrifugação e suspensão em PBS estéril. A partir da sequência de DNA genômico, realizou-se a construção das vacinas de DNA em plasmídeo pVAX, resultando nas construções pVAX/LipL32 e pVAX/LigA. Os plasmídeos foram propagados em *E. coli* DH5α e caracterizados em sistema eucarioto (HEK293), os plasmídeos foram propagados em sistema de larga escala (500ml) e purificados com o kit NucleoBond® Xtra Maxi Plus (Macherey - Nagel), quantificados por espectrofotometria e armazenados a -20°C. Os antígenos recombinantes rLigA e rLipL32 foram produzidos por clonagem das respectivas sequências codificadoras no plasmídeo pET100 e transformação em *E. coli*. As proteínas foram expressas, a purificação foi feita por cromatografia de afinidade.

Após o processo, procedeu-se a diálise com PBS durante 48h. A quantificação foi realizada pelo kit BCA[®] Protein Assay (PIERCE).

Para os testes de imunoproteção, hamsters (*Mesocricetus auratus*) com 4 semanas de idade foram utilizados, onde 29 machos e 34 fêmeas foram inoculados com LigA, conforme Tabela 1 e 34 fêmeas com LipL32, conforme Tabela 2. As doses foram administradas com 14 dias de intervalo, via intramuscular. O desafio dos animais foi realizado com 5x10² leptospiras vivas por animal, via intraperitoneal, 14 dias após a segunda dose. Este projeto está cadastrado no COCEPE/UFPel sob o número 5.00.00.019 e foi aprovado pela Comissão de Ética em Experimentação Animal (CEEA) da UFPel, processo nº 23110.004657/2010-84, cadastro nº CEEA 4657, financiado pela FAPERGS (Processo 11/1832-3).

Tabela 1. Imunizações com LigA. Doses utilizadas por animal, conforme grupo.

3 0		, J			
Grupo	1ª dose	2ª dose			
1 Bacterina	10 ⁸ células em PBS	10 ⁸ células em PBS			
2 PBS	200µL PBS	200μL PBS			
3 pVax	100µg pVax	100μg pVax			
4 pVax / Al(OH)₃	100μg pVax	15% Al(OH)₃			
5 pLigA	100μg pVax/LigA	100μg pVax/LigA			
6 pLigA/rLigA+ Al(OH)₃	100μg pVax/LigA	40μg rLigA + 15% Al(OH) ₃			

Tabela 2. Imunizações com LipL32. Doses utilizadas por animal, conforme grupo.

Grupo	1ª dose	2ª dose
1 Bacterina	10 ⁸ células em PBS	10 ⁸ células em PBS
2 PBS	200µL PBS	200µL PBS
3 pVax	100µg pVax	100μg pVax
4 pVax / Al(OH) ₃	100µg pVax	15% Al(OH) ₃
5 pLipL32	100µg pVax/LipL32	100µg pVax/LipL32
6 pLipL32/rLipL32+ Al(OH) ₃	100µg pVax/LipL32	40μg rLipL32 + 15% Al(OH) ₃

Durante o experimento, os animais que vieram a óbito tiveram rins, fígado e pulmão coletados para os ensaios de cultura renal e *imprint*. Para os sobreviventes, os órgãos foram coletados após a eutanásia dos animais, 25 dias após o desafio.

Para obtenção da cultura renal, utilizou-se o rim esquerdo de cada animal. Cada órgão coletado foi macerado em tubos Falcon contendo 5ml de meio EMJH (Difco Laboratories) enriquecido com 10% de suplemento posteriormente incubado a 30°C por 1h. Após, foi realizado um repique de 500µl em 5ml de meio EMHJ e incubado por 7 dias. Posteriormente se observou as culturas utilizando microscópio de campo escuro a fim de verificar o crescimento. Para a técnica de imprint, rim, fígado e pulmão foram cortados ao meio e pressionados sobre as lâminas preparadas com poli-L-lisina e fixadas com acetona. Foram, então, hidratadas três vezes e bloqueadas com solução de BSA 0,4% por 40 min. Após lavagem, as lâminas foram cobertas com anticorpo anti-leptospira inteira, produzido em coelhos e incubadas durante 1h. Lavaram-se as lâminas e adicionou-se anticoelho conjugado a FIT-C. Após novo período de incubação, as lâminas foram lavadas e montadas para a leitura em microscópio de campo escuro. (Chagas-Júnior et al., 2009).

3. RESULTADOS E DISCUSSÃO

Foram obtidas vacinas de DNA com o plasmídeo ligado ao inserto, denominadas pVax/LipL32 e pVax/LigA, corretamente expressas em células HEK.

A expressão das proteínas LipL32 e LigA foi demonstrada pela transfecção transiente em células HEK293, seguida pela análise de WB. Os genes construídos LigA e LipL32 expressaram altos níveis das proteínas correspondentes com a massa molecular aparente de 63kDa e 32kDa, respectivamente.

Os dados obtidos com o experimento de imunoproteção para pVaxLipL32 estão representados na Tabela 3, assim como os resultados gerados a partir da cultura renal e da técnica de *imprint* realizados a partir dos grupos imunizados com LipL32.

Os resultados obtidos com o experimento de imunoproteção, cultura renal e *imprint*s, referentes aos grupos imunizados com LigA, estão divididos em grupos de machos e fêmeas e listados nas Tabelas 4 e 5, respectivamente.

Tabela 3. Sobreviventes, cultura renal e técnica de *imprint* para os experimentos com LipL32.

55 <u>2.</u> p252.						
Grupos	Sobreviventes	Cultura	<i>Imprint</i>) (Positivos/total)			
	(Sobrevivente/total)	(Positivos/total)			otal)	
			Rim	Fígado	Pulmão	
PVax	3/6	1/6	4/6	4/6	4/6	
pVax/ Al(OH) ₃	3/6	4/6	3/5*	3/5*	2/3*	
pVaxLipL32/rLipL32	6/6	0/6	1/6	2/6	1/6	
pVaxLipL32	6/6	0/6	2/6	1/6	1/6	
PBS	0/6	4/6	6/6	4/6	6/6	
Bacterina	4/4	0/4	0/4	0/4	0/4	

^{*}Animais não coletados

Tabela 4. Sobreviventes, cultura renal e técnica de *imprint* para os experimentos com LigA. Resultados referentes aos machos.

Grupos	Sobreviventes	Cultura Renal	Imprint		
	(Sobreviventes/total)	(Positivos/total)	(Positivos/total)		total)
			Rim	Fígado	Pulmão
PVax	0/5	5/5	5/5	5/5	5/5
pVax/ Al(OH) ₃	0/5	3/5	5/5	5/5	5/5
pVaxLigA	1/5	3/5	4/5	3/5	3/5
pVaxLigA/rLigANI+Al(OH) ₃	2/5	3/5	3/5	2/5	3/5
PBS	0/4	2/4	4/4	4/4	4/4
Bacterina	5/5	0/5	1/5	0/5	0/5

Tabela 5. Sobreviventes, cultura renal e técnica de *imprint* para os experimentos com LigA. Resultados referentes às fêmeas.

Grupos	Sobreviventes	Cultura Renal	Imprint		
	(Sobreviventes/total)	(Positivos/total)	(Positivos/total)		otal)
			Rim	Fígado	Pulmão
PVax	0/6	6/6	6/6	6/6	6/6
pVax/ Al(OH) ₃	0/6	5/6	6/6	6/6	6/6
pVaxLigA	0/6	5/6	6/6	6/6	6/6
pVaxLigA/rLigANI+AI(OH) ₃	1/6	4/6	5/6	5/6	4/6
PBS	0/4	2/4	4/4	4/4	3/4
Bacterina	6/6	0/6	1/6	0/6	1/6

Os grupos vacinados com bacterina obtiveram sobrevivência absoluta no experimento de desafio. Entretanto, houve presença de leptospiras no *imprint* renal de 1/5 dos machos e 1/6 das fêmeas, as quais também apresentaram *imprint* positivo para leptospiras no pulmão (1/6), indicando imunidade não estéril. O candidato vacinal pVaxLigA, apesar de não ter protegido os animais da morte de forma estatisticamente relevante, se mostrou eficiente, por hora, em prevenir a colonização dos órgãos dos animais sobreviventes.

Para o candidato vacinal pVaxLipL32, houve uma sobrevivência total dos grupos vacinais, havendo indícios de que há um grande potencial protetor nesta construção. Claramente, houve um problema quanto ao desafio, e este fato pode ser justificado na possibilidade de a dose-desafio estar muito próxima à dose correspondente à DL50 da cepa.

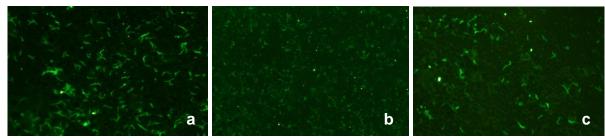


Figura 1 – Imagem representativa da técnica de *imprint*. Leptospiras observadas a partir da técnica realizada em rim (a), fígado (b) e pulmão (c).

4. CONCLUSÕES

O plasmídeo ligado com o inserto codificante para LipL32 é um promissor candidato ao desenvolvimento de uma vacina de DNA.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ADLER, B.; MOCTEZUMA, A. P. Leptospira and leptospirosis. **Veterinary Microbiology**, v.140, n.3-4, p.287-296, 2010.

CHAGAS-JUNIOR, A. D.; MCBRIDE, A. J. A.; ATHANAZIO, Daniel. A.; FIGUEIRA, C. P.; MEDEIROS, M. A.; REIS, M. G.; KO, A. I.; MCBRIDE, F. W. C. An imprint method for detecting leptospires in the hamster model of vaccine-mediated immunity for leptospirosis. **Journal of Medical Microbiology**, n.58, p.1632–1637, 2009.

CUI, Z. DNA vaccine. Advanced Genetics, v.54, p.257-289, 2005.

FAINE, S.; ADLER, B.; BOLIN, C. A.; PEROLAT, P. **Leptospira and Leptospirosis**, Austrália, p.272, 1999.

HARTSKEERL, R. A.; COLLARES-PEREIRA, M.; ELLIS, W. A. Emergence, control and re-emerging leptospirosis: dynamics of infection in the changing world. Clinical **Microbiology and Infection**, v.17, n.4, p.494–50, 2011.

LEVETT, P. N. Leptospirosis. **Clinical Microbiology Reviews**, v.14, n.2, p.296-329, 2001.

LU, S. Heterologous prime-boost vaccination. **Current Opinion in Immunology**, v.21, p.346-351, 2009.