

EFEITO DO FARELO E OLÉO DE CANOLA SOBRE O DESEMPENHO PRODUTIVO DE CODORNAS DUPLO PROPÓSITO DURANTE O SEGUNDO CICLO

<u>CAROLINE BAVARESCO</u>¹; EDENILSE GOPINGER²; PRISCILA O. MORAES³; RENATA CEDRES DIAS¹; EDUARDO GONÇALVES XAVIER⁴

¹Aluna do Curso de Zootecnia/UFPel – <u>carolinebavaresco@hotmail.com</u>;

¹Aluna do Curso de Zootecnia/UFPel – <u>renatacedres@hotmail.com</u>;

²Doutoranda do Programa de Pós-Graduação em Zootecnia/UFPel – <u>edezoo@yahoo.com.br</u>;

³Mestranda do Programa de Pós-Graduação em Zootecnia/UFPel – <u>p.agronomia@gmail.com</u>;

⁴Prof. Associado do Programa de Pós-Graduação em Zootecnia/UFPel – <u>egxavier@yahoo.com</u>.

1. INTRODUÇÃO

A expansão da coturnicultura no Brasil tem merecido destaque, pois inicia nova fase, consolidando-se como exploração comercial (LEANDRO et al., 2005). Tal assertiva é confirmada por dados do Instituto Brasileiro de Geografia e Estatística - IBGE (2013), que revela que o total de codornas em 2011 apresentou crescimento considerável em comparação a 2010, registrando um aumento de 19,8%. Adicionalmente, a produção de ovos foi, no ano de 2011, de 260,4 milhões de dúzias, equivalente a um aumento de 12,0% em relação ao volume registrado em 2010.

A alimentação das codornas desempenha papel fundamental na criação. Portanto, é indispensável administrar dietas devidamente balanceadas, compostas por ingredientes de elevada digestibilidade, capazes de satisfazer às exigências nutricionais da ave e seu perfeito desenvolvimento e produção (MURAKAMI E ARIKI, 1998).

Um dos ingredientes que vem sendo testado como alternativa para substituir, em parte ou em todo, o farelo de soja nas dietas é o farelo de canola (FRANZOI et al., 2000). A canola foi desenvolvida a partir do melhoramento genético da colza (Brassica napus L. var. oleifera e/ou Brassica campestris L. var. oleifera). É uma crucífera que possui 45 a 50% de óleo no grão e 34 a 38% de proteina no farelo (BAIER E ROMAN, 1992). Ao longo dos anos, a canola tem ocupado lugar de destaque na produção de grãos no Brasil. A estimativa para a safra 2012/2013 é de 60,5 mil toneladas do grão, o que representa um aumento de 16,3% em relação à safra anterior, sendo reflexo da consolidação da indústria do biodiesel no país, que tende a continuar crescendo (CONAB, 2013). Em decorrência disso, o farelo de canola, bem como o óleo, tendem a aumentar a sua oferta no mercado.

O farelo de canola possui boa digestibilidade dos principais aminoácidos essenciais para as aves. Porém, o teor de energia metabolizável e proteina é menor em relação ao farelo de soja: 1692 kcal/kg e 2506 kcal/kg, 38% e 45%, respectivamente (ROSTAGNO et al., 2011). Tais fatores podem limitar economicamente a utilização de níveis de substituição mais elevados do farelo de soja pelo de canola.

O emprego de óleos na dieta das aves é uma estratégia utilizada quando se objetiva elevar o nível de energia. Adicionalmente, pode ocorrer uma melhora da conversão alimentar, um aumento da absorção das vitaminas lipossolúveis e da eficiência do consumo de energia. Existem diversas fontes lipídicas que podem ser utilizadas, como o óleo de canola (ALBINO E BARRETO, 2003), rico em ácidos graxos insaturados, que são constituintes estruturais das membranas celulares, cumprindo funções energéticas e de reservas metabólicas, também

participando da formação de hormônios e sais biliares (VANENZUELA e NETO, 2003).

Considerando-se a disponibilidade destes produtos e conhecendo-se alguns benefícios de sua inclusão na dieta de frangos de corte e poedeiras, estudos avaliando a sua utilização em dietas para codornas se mostram pertinentes. Desse modo, objetivou-se avaliar o efeito da inclusão do farelo e óleo de canola na dieta de codornas de duplo propósito sobre o desempenho produtivo durante o segundo ciclo das aves.

2. METODOLOGIA

O experimento foi conduzido no Setor de Avicultura do Laboratório de Ensino e Experimentação Zootécnica Professor Dr. Renato Rodrigues Peixoto (LEEZO) do Departamento de Zootecnia-FAEM-UFPel. Foram utilizadas 84 codornas fêmeas com 208 dias de idade, selecionadas de um cruzamento entre os machos da linhagem *Coturnix coturnix coturnix*, com as fêmeas da linhagem *Coturnix coturnix japonica*.

As aves foram alojadas em gaiolas metálicas individuais, equipadas com comedouro metálico do tipo calha e bebedouro tipo *nipple*. Durante todo o período experimental as aves receberam água e alimento *ad libitum*. As dietas fornecidas foram formuladas para atender as exigências nutricionais, de acordo com as recomendações de ROSTAGNO et al. (2011), sendo isocalóricas, isoproteicas e isovitamínicas, conforme os tratamentos: T1 — Dieta controle: Dieta basal com 100% farelo de soja + 100% óleo de soja; T2 — Dieta basal com 75% de farelo de soja e 25% de farelo de canola + 100% óleo de soja; T3 — Dieta basal com 75% de farelo de soja e 25% de farelo de canola + 100% óleo de canola; T4 — Dieta basal com 100% farelo de soja + 100% óleo de canola.

Para a avaliação de desempenho produtivo, as aves foram pesadas no início do experimento e ao final do ciclo produtivo (28 dias). A produção e o peso dos ovos foram registrados diariamente, e a quantidade de ração fornecida foi controlada, para se obter as seguintes variáveis: consumo de ração (g/ave/dia), peso vivo (g), produção (%/ave/dia), peso dos ovos (g) e massa de ovos (g/ave/dia). Foi avaliada a conversão por dúzia de ovos produzidos (kg de ração/kg de ovo).

Utilizou-se o delineamento inteiramente casualizado, com quatro tratamentos e 21 repetições, sendo cada ave uma unidade experimental. Os dados foram analisados por um pacote estatístico, submetidos à ANOVA e as médias dos tratamentos comparadas pelo teste de Tukey a 5% de significância.

3. RESULTADOS E DISCUSSÃO

Observou-se que a inclusão do farelo de canola (25%) e óleo de canola (100%) não promoveu diferença significativa (p>0,05) entre os tratamentos para as variáveis avaliadas (Tabela 1). Os dados obtidos corroboram com CASARTELLI et al. (2007), que analisando o desempenho produtivo de poedeiras não encontraram diferença significativa ao incluírem na dieta níveis de 0%, 4%, 8% e 12% de farelo de canola.

No entanto, SUMMERS E LEESON (1985) observaram queda na produção e piora da conversão alimentar de poedeiras alimentadas com dietas isocalóricas formuladas com 10% de inclusão de farelo de canola. Os autores, porém, não identificaram o motivo desse efeito. Segundo BONNARDEAUX (2007), o farelo de canola promove queda no consumo das aves devido a baixa palatabilidade,

causada pelo amargor ou adstringência, efeito dos compostos fenólicos nele contidos. MURAKAMI et al. (1995), observaram redução linear nos pesos dos ovos conforme aumentou o nível de inclusão de farelo de canola na dieta (0%, 3%, 6%, 9% e 12%). Os autores atribuíram o resultado a baixa disponibilidade de metionina do farelo de canola.

Tabela 1: Efeito da inclusão de farelo e óleo de canola sobre o desempenho de

codornas no segundo ciclo produtivo.

codomas no segundo elelo produtivo.						
Variáveis analisadas	T1	T2	T3	T4	р	CV(%)
Produção (%)	81,87	81,09	81,71	79,96	0,95	12,81
Peso da ave (g)	215,15	206,95	214,53	213,70	0,82	13,20
Peso dos ovos (g)	12,88	12,92	12,76	12,88	0,98	87,99
consumo ração(g)	763,64	783,77	823,57	821,97	0,12	10,57
Massa de ovos (g)	10,57	10,46	10,44	10,27	0,95	14,49
Conversão por						
dúzia de ovos	2,94	3,07	2,97	2,97	0,94	19,84
Conversão por						
massa de ovos	2,66	2,73	2,85	2,89	0,55	18,25

CV(%) = Coeficiente de variação. p = nível de significância.

A substituição do óleo de soja pelo de canola também não influenciou as variáveis analisadas. De modo semelhante, COSTA et al. (2008), estudando o efeito da utilização de óleo de soja e de canola em dietas para poedeiras semipesadas, também não constataram efeito do aumento dos níveis de óleo de canola sobre a produção de ovos.

A área e a produção de canola vêm aumentando, principalmente no Rio Grande do Sul, e uma das principais motivações é o clima favorável na época do plantio (CONAB, 2013). As cotações de preço realizadas na região de Pelotas/RS indicam maior viabilidade da utilização de farelo de canola nas dietas, uma vez que apresenta um preço médio de R\$ 0,98/kg, contra R\$ 1,65/kg do farelo de soja, uma diferença de R\$ 0,67/kg. Isso gera um incremento na utilização do farelo para a produção de ração, na tentativa de fornecer maior quantidade de proteína animal e com preços mais acessíveis à população.

4. CONCLUSÃO

A substituição do farelo e óleo de soja pelo farelo e óleo de canola nas dietas de codornas de duplo propósito não afeta o desempenho produtivo durante o segundo ciclo.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALBINO, L.F.T; BARRETO, S.L.T. Codornas: criação de codornas para produção de ovos e carne. Viçosa: Aprenda Fácil, 2003. 289p

BAIER, A.C; ROMAN, E.S. Informações sobre a cultura da "canola" para o sul do Brasil. In: SEMINÁRIO ESTADUAL DE PESQUISA DE CANOLA, Passo Fundo: EMBRAPA/CNPT, 1992. Cascavel, PR. Resultados..., p.1-10.

BONNARDEAUX, J. **Uses for canola meal**. Western Australia. Departament of Agriculture and Food, 2007.

- CASARTELLI, E. M; JUNQUEIRA, O. M; FILARDI, R. S; LAURENTIZ, A.C; ASSUENA, V; PILLEGI, J; MOREIRA, L. P. C. Utilização do farelo de canola para poedeiras comerciais formuladas com base em aminoácidos totais e digestíveis. Ciência Animal Brasileira, v. 8, n. 1, p. 95-103, jan./mar. 2007.
- COMPANHIA BRASILEIRA DE ABASTECIMENTO, CONAB. **Acompanhamento de safra brasileira: grãos, quarto levantamento**, Brasília, janeiro 2013.
- COSTA, F. G. P; SOUZA, C. J; GOULART, C. C; NETO, R. C. L; COSTA, J. S; PEREIRA, W. E. Desempenho e qualidade dos ovos de poedeiras semipesadas alimentadas com dietas contendo óleos de soja e canola. **Revista Brasileira de Zootecnia,** vol.37, n.8, Viçosa Aug. 2008.
- FRANZOI E. E.; SIEWERDT F., RUTZ F.; BRUM P. A. R.;GOMES P. C. Composição de carcaça de frangos de corte alimentados com farelo de canola. **Ciência Rural,** Santa Maria, v. 30, n. 2, p. 337-342, 2000.
- IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIAE ESTATÍSTICA. Produção da Pecuária Municipal 2013.
- LEANDRO, N.S.M.; DEUS, H.A.B.; STRINGHINI, J.H. Aspectos de qualidade interna e externa de ovos comercializados em diferentes estabelecimentos na região de Goiânia. **Ciência Animal Brasileira**, v.6, p.71-78, 2005.
- MURAKAMI, A.E.; ARIKI, J. **Produção de codornas japonesas.** Jaboticabal: FUNEP, 1998. 79p.
- MURAKAMI, A.E.; KIRA, K.C.; SCAPINELLO, C. Farelo de canola na alimentação de poedeiras comerciais. **Revista Brasileira de Zootecnia,**Viçosa, v.24, n.3, p. 401-408, 1995.
- ROSTAGNO, H.S.; ALBINO, L.F.T.; DONZELE, J.L. et al. **Tabelas brasileiras** para aves e suínos: composição de alimentos e exigências nutricionais. 3. ed. –Viçosa, MG: UFV, DZO, 2011, 252p.
- SUMMERS, J.D.; LESSON, S. Mineral profile of canola and soybean meal. **Canadian Journal of Animal Science,** v. 65, n. 4, p. 913-919, 1995.
- VALENZUELA, A.B.; NIETO, S.K. Ácidos grasos omega-6 y omega- 3 en La nutrición perinatal: su importancia en el desarrollo del sistema nervioso y visual. **Rev. Chil. Pediatr.** 2003; 74: 149-57.