

PERFIL LONGITUDINAL DE CHUVEIROS ATMOSFÉRICOS EXTENSOS

LUAN ARBELETCHE¹; MÁRCIO MÜLLER²; VICTOR GONÇALVES³

¹Universidade Federal de Pelotas – luan.arbeletche@gmail.com ²Universidade Federal de Pelotas – mamuller@ifi.unicamp.br ³Universidade Federal de Pelotas – barros@ufpel.edu.br

1. INTRODUÇÃO

A Terra é constantemente bombardeada por partículas energéticas provenientes do espaço, conhecidas como raios cósmicos. Essas partículas podem atingir a atmosfera com energias menores que 10⁹ eV ou até com mais de 10²⁰ eV, onde o fluxo de eventos é fortemente suprimido devido ao efeito GZK (ENGEL; HECK; PIEROG, 2011). Para energias acima de 10¹⁵ eV, o fluxo de raios cósmicos é muito baixo e as partículas associadas podem ser observadas somente através de medidas indiretas. Nessa faixa de energias, a análise é feita sobre a cascata de partículas secundárias geradas na interação do raio cósmico primário com a atmosfera. A esses chuveiros de partículas dá-se o nome de Chuveiros Atmosféricos Extensos (CAEs).

Após a primeira interação com atmosfera, os processos de produção de partículas secundárias dominam no desenvolvimento de um CAE, aumentando o número de partículas em um efeito cascata. Em um dado momento, a energia das partículas é pequena o suficiente para que os processos de absorção pela atmosfera dominem, fazendo com que o número de partículas caia rapidamente e o chuveiro passe a extinguir-se. A profundidade na atmosfera (em g/cm^2) onde um CAE atinge seu número máximo de partículas (X_{max}) pode ser aproximada pelo modelo de Heitler-Matthews com a seguinte equação

$$X_{max} = \lambda_{had} + \lambda_{em} \cdot \ln \left(\frac{E_0}{2 N_{total} \cdot A \cdot \xi_{em}^c} \right), \tag{1}$$

onde λ_{had} é o comprimento de interação das partículas hadrônicas na atmosfera, λ_{em} é o comprimento de radiação das partículas eletromagnéticas na atmosfera, E_0 é a energia da partícula primária, N_{total} é a multiplicidade de partículas produzidas nas interações hadrônicas, A é o número de massa da partícula primária e ξ^c_{em} é a energia crítica das partículas eletromagnéticas, abaixo da qual não há produção de partículas (GUIMARÃES, 2008). Com base nesse modelo, espera-se que a profundidade onde o chuveiro atinge o máximo aumente com o logaritmo da energia E_0 da partícula primária. É importante notar também a relação entre a massa A da partícula primária e o valor de X_{max} , resultado conhecido como modelo de superposição. Essas predições são bastante relevantes, pois dizem respeito ao perfil longitudinal dos CAEs, que é o desenvolvimento do chuveiro ao longo do seu eixo principal, sendo esse um dos principais observáveis via experimento.

Usualmente, o estudo dos CAEs é feito comparando-se dados experimentais com simulações computacionais. No entanto, um CAE típico pode envolver até 10¹¹ partículas no seu máximo (GUIMARÃES, 2008), o que torna as simulações bastante complicadas. Além disso, as simulações de CAEs lidam com interações hadrônicas com energias acima de 10²⁰ eV, valor que supera em algumas ordens de grandeza o limite da atual geração de aceleradores de partículas. Assim,

diversos modelos podem ser empregados nas simulações dos chuveiros atmosféricos, cada qual com suas propriedades e predições teóricas diferentes para as interações hadrônicas em altas energias.

Neste trabalho, utilizamos o software CORSIKA (COsmic Ray SImulator for Kaskade) para simular CAEs. Nosso objetivo é analisar as propriedades desses chuveiros e suas relações com as grandezas observáveis experimentalmente. Aqui, apresentamos os resultados obtidos na análise do perfil longitudinal em função da energia e da composição da partícula primária.

2. METODOLOGIA

Foram feitas simulações com o CORSIKA para CAEs iniciados por raios cósmicos com energias entre 10¹⁴ eV e 10¹⁸ eV, tomando-se amostras de 50 chuveiros para cada valor de energia. As simulações foram feitas igualmente para chuveiros iniciados por prótons e por núcleos de ferro.

Com os resultados de perfil longitudinal obtidos, calculou-se o valor médio da profundidade onde os chuveiros atingem o número máximo de partículas (X_{max}) em função da energia, para então compararmos os resultados com o modelo de Heitler-Matthews. Calculou-se também o desvio quadrático médio de X_{max} em função da energia para as diferentes partículas primárias.

3. RESULTADOS E DISCUSSÃO

A figura a seguir apresenta os resultados obtidos para X_{max} em função da energia E_0 da partícula primária. Os pontos no gráfico representam as médias calculadas sobre as amostras obtidas nas simulações e as linhas são um ajuste linear desses dados com o logaritmo da energia. O eixo das abscissas no gráfico está ajustado em escala logarítmica.

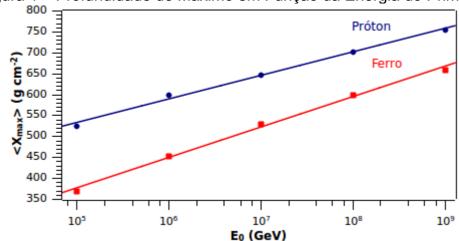
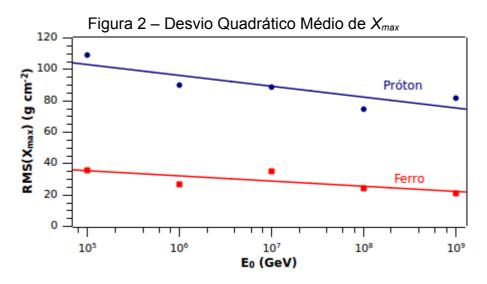


Figura 1 – Profundidade de Máximo em Função da Energia do Primário

Os resultados acima mostram que há uma dependência linear da profundidade de máximo dos chuveiros com o logaritmo da energia da partícula primária, tanto para aqueles iniciados por prótons quanto para aqueles iniciados por núcleos de ferro. Esse resultado é exatamente o previsto pelo modelo de Heitler-Matthews, equação (1). Além disso, os resultados deixam claro que os chuveiros iniciados por núcleos de ferro tem seus máximos antecipados em



relação àqueles iniciados por prótons, o que está em acordo com o modelo da superposição.

Analisou-se também as flutuações dos dados obtidos calculando-se o desvio quadrático médio de X_{max} como função da energia. Os resultados obtidos estão representados na figura abaixo.

O gráfico anterior mostra que os chuveiros iniciados por núcleos de ferro têm flutuações menores quando comparadas às flutuações de chuveiros iniciados por prótons. A importância desse resultado está no fato de que essas flutuações são observáveis em chuveiros atmosféricos e, devido à influência da composição da partícula primária, a medição dessas flutuações é uma forma de determinar indiretamente a composição dos raios cósmicos.

4. CONCLUSÕES

Os resultados obtidos são de grande importância por demonstrarem um método de análise dos CAEs que permite inferir informações como a energia e composição da partícula primária a partir de medições indiretas. Embora relevantes, esses resultados já são conhecidos, vide ENGEL; HECK; PIEROG (2008). Ainda assim, destaca-se a importância dos resultados no que concerne ao nível de desenvolvimento do presente trabalho, pois permitiram um maior aprofundamento dos autores no tema que será objeto de trabalhos posteriores mais sofisticados.

5. REFERÊNCIAS BIBLIOGRÁFICAS

CAPDEVIELLE, J.N; HECK, D.; KNAPP, J.; SCHATZ, G.; THOUW, T. CORSIKA: A Monte Carlo Code to Simulate Air Showers. Report FZKA 6019 (1998), Forschungszentrum Karlsruhe. Acessado em 18 mai. 2014. Online. Disponível em: https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.html.

ENGEL, R.; HECK, D.; PIEROG, T. Extensive Air Showers and Hadronic Interactions at High Energy. **Annual Review of Nuclear and Particle Science**, Karlsruhe, v.61, p.467-489, 2011.

GRUPEN, C. Astroparticle Physics. Siegen: Springer, 2005.

GUIMARÃES, P.V. **Análise da influência das interações primárias em chuveiros aéreos estendidos**. 2008. Dissertação (Mestrado em Ciências) — Programa de Pós-Graduação em Física, Universidade Federal do Rio de Janeiro.

STANEV, T. **High Energy Cosmic Rays**. Chichester: Praxis Publishing, 2010.

THEODORO, V. M. Contribuição para os métodos de identificação das componentes eletromagnética e muônica de chuveiros atmosféricos extensos no Observatório Pierre Auger. 2011. Dissertação (Mestrado em Física) — Programade Pós-Graduação em Física, Universidade Estadual de Campinas.