

SÍNTESE PARA O DESENVOLVIMETNO DE UMA PELÍCULA PROTETORA CONTRA CORROSÃO DE AÇOS DE BAIXO CARBONO VIA SOL-GEL

<u>EDUARDO SIQUEIRA PEREIRA</u>¹; ARTHUR VIEIRA DALMAGRO¹ CAROLINA ELICKER²; FAILI CINTIA TOMSEN VEIGA³; JOSÉ JURADO EGEA⁴ SERGIO DA SILVA CAVA^{1,2}

¹Engenharia de Materiais – UFPel – arthur.dalmagro @gmail.

²Programa de Pós-Graduação em Ciência e Engenharia de Materiais – UFPel

³Universidade Federal de Pelotas, CDTec, Pelotas e Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Materiais, Porto Alegre, RS, Brasil – faili.cintia @gmail.com

⁴Consejo Superior de Investigaciones Científicas, Ilhas Canárias, Espanha – pepejuradoegea @gmail.com

1. INTRODUÇÃO

A corrosão é considerada como um inimigo silencioso que ameaça a resistência do aço e infra-estruturas em todos os países, sem exceção, levando a paradas de produção, desperdício de recursos valiosos, perda ou contaminação dos produtos, redução na eficiência, manutenção cara, e projetos super dimensionados (ELHALAWANY; SALEEB; ZAHRAN, 2014).

A composição do sistema CAS (CaO - Al₂O₃ - SiO₂) é interessante devido ao seu relativamente baixo ponto de fusão, ainda por suas características de baixa expansão térmica, responsável por sua estabilidade dimensional no aquecimento até altas temperaturas e excelente resistência ao choque térmico, tornando-a um material refratário de propriedades únicas (PACHECO, 2014).

O processamento sol-gel é uma técnica convencional dentre os diversos métodos de síntese para a preparação de nanopartículas. Neste método, as partículas coloidais ou uma solução coloidal são misturadas com um líquido, o que faz com que elas se unam em uma rede contínua, chamada gel (PACHECO, 2014).

O objetivo do presente trabalho é sintetizar e caracterizar uma composição do sistema CaO - Al₂O₃ - SiO₂ via sol-gel para ser aplicado como uma película protetora, para estudos de corrosão do aço de baixo carbono.

2. METODOLOGIA

A composição dos pós do sistema $CaO-Al_2O_3-SiO_2$ foi calculado com base no diagrama de fases, assim permitindo obter as características da fase próxima do ponto calculado, visto que este ponto se encontra com 10% de CaO, 40% de Al_2O_3 e 50% de SiO_2 .

Para sintetizar foi utilizado o método de sol-gel foi criado um sistema com um fluxo contínuo de água, com 2 balões volumétricos de 250 ml, no primeiro balão foi inserido TEOS (que é a fonte de Sílica) e foi dissolvido em 20ml de álcool etílico absoluto. Posteriormente, a solução foi agitada mecanicamente em temperatura controlada de 70°C por 30 minutos, para a formação da fase cristalina.

No segundo balão foi inserido Nitrato de Cálcio e Nitrato de Alumínio e dissolvidos em 40mL de álcool etílico absoluto. Posteriormente, a solução a solução foi agitada mecanicamente em temperatura controlada de 70°C por 30 minutos, para a formação da fase cristalina.

Obtida a formação cristalina, os reagente dos balões 1 e 2 foram misturados. Após esta mistura, foi adicionado 5 gotas de ácido nítrico e posteriormente agitado mecanicamente, para garantir que o pH chegue a zero. Após, foi colocada a solução em uma estufa a 60°C por 72 horas para a formação do gel, sendo posteriormente calcinado em forno tipo mufla nas temperaturas 400°C, 800°C e 1200°C durante 8 horas para a completa oxidação do cátion metálico e eliminação da matéria orgânica.

Os nanopós foram caracterizados por difração de raios-X (DRX), microscopia eletrônica de varredura (MEV) e ainda devem ser caracterizados por e espectroscopia de raios-X por dispersão de energia (EDX), e espectroscopia no infravermelho (IR), e ainda devem ser caracterizadas por microscopia eletrônica de transmissão (MET), espectroscopia Raman e impedância eletroquímica (EIS).

3. RESULTADOS ESPERADOS

Os pós foram analisados por meio de difração de raios-X (DRX), conforme a Figura 1 visa acompanhar a formação e identificação das fases cristalinas, nas temperaturas de 400°C, 800°C e 1200°C.

Nas temperaturas de 400° C e 800° C apresentam uma desordem estrutural, não possui um inicio de cristalização e estrutura vítrea e rica em silicato, já em 1200° C apresenta uma difratograma com duas fichas diferentes: 72-1441 (Al_2SiO_5) e 83-1514 ($Al_2(SiO_4)O$, apresentando uma estrutura vitrocerâmica.

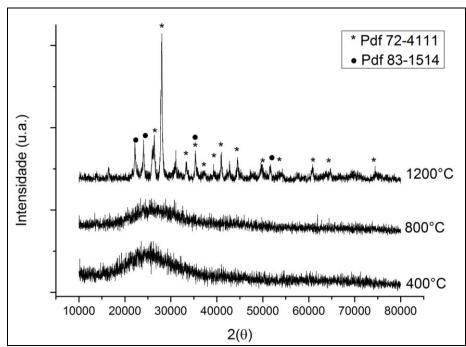
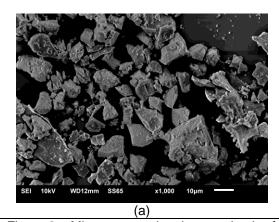


Figura 1 – Difratogramas pó de CaO-Al₂O₃-SiO₂ tratados termicamente a 400°C, 800°C e 1200°C. As fichas 72-1441 (Al₂SiO₅) e 83-1514 (Al₂(SiO₄)O respectivamente.


Com as análises da microscopia eletrônica de varredura (MEV), são ilustradas na Figura 2. A imagem (a) apresenta um panorama da amostra, onde se percebe que os aglomerados, já na (b) pode se observar que tem aspecto de uma vitrocerâmica, pois a amostra é bem uniforme, além de se ver que tem indícios de ser nano vidros de cerâmica.

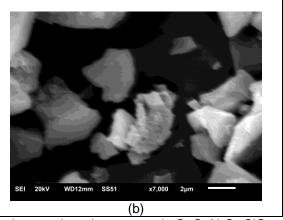


Figura 2 – Microgramas de microscopia eletrônica de varredura da amostra de CaO-Al₂O₃-SiO₂ tratado termicamente a 1200°C (a) com ampliação de 1000x; (b) com ampliação de 7000x.

A análise de EDX, que determina a composição química da amostra, logo confirmou a composição química da amostra anteriormente mencionada.

As caracterizações de MET, Micro Raman e Impedância estão sendo no estágio de preparação de amostras.

4. CONCLUSÕES

Espera-se que com a aplicação do filme fino cerâmico obtido por sol-gel, com composições no sistema CaO.Al₂O₃.SiO₂ sobre a superfície do substrato de aço carbono a resistência à corrosão seja maior em relação a resistência a corrosão de um substrato de aço carbono sem proteção.

O DRX foi possível analisar duas diferentes fichas: 72-1441 (Al_2SiO_5) e 83-1514 ($Al_2(SiO_4)O$, visto que é um ponto eutético e está em uma estrutura vitrocerâmica, ainda requer um refinamento dessa análise. As imagens pelo MEV apresentaram uma estrutura homogenia e com aspecto de ser nano vidros de cerâmica.

Além disso, isto elimina a necessidade de ligas metálicas tipo aço inoxidável, que são caros por possuírem elementos de liga como cromo, níquel, molibdêni. Desta forma, materiais do sistema Mulita (3Al₂O₃.2SiO₂) que são muito mais abundantes e baratos.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ELHALAWANY, N.; SALEEB, M. M.; ZAHRAN, M. K. Novel anticorrosive emulsiontype paints containing organic/inorganic nanohybrid particles. Progress in Organic Coatings, Elsevier, v. 77, n. 2, p. 548–556, 2014.

PACHECO, L. H. N. Filmes finos sol-gel de CaO-Al₂O₃-SiO₂ para revestimento de aços carbono. 2014. 40 f. Qualificação de Mestrado (Mestrado em Ciência e Engenharia de Materiais). Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de Pelotas, Pelotas.