

REDESENHO A PARTIR DO DESENHO PARAMÉTRICO: APLICAÇÃO AO CASO DA CAIXA DÁGUA DA PRAÇA DA SANTA CASA

VALENTINA TOALDO BRUM¹; ADRIANE BORDA ALMEIDA DA SILVA²

¹GEGRADI / FAUrb / UFPel – valentinatbrum @hotmail.com ² GEGRADI / FAUrb / UFPel – adribord @hotmail.com

1. INTRODUÇÃO

Este trabalho relata o exercício de análise e representação de um patrimônio arquitetônico, que, embora possa atuar na valorização e construção de conhecimento sobre o objeto representado, tem o propósito de investigar sobre lógicas geométricas subjacentes à organização formal em processos projetuais.

Segundo Sainz (1990), a postura de investigação estava implícita em exercícios de representação de oficinas renascentistas e barrocas. Os estudantes dissecavam obras de arquitetura por meio do desenho de observação para compreender e, na sequência, compor variações, obtendo novos projetos. Este método era considerado apropriado para descobrir inspirações e soluções projetuais adotadas pelos arquitetos. Para o autor, a exploração de variações sobre um tema se assemelha ao processo de composição musical, considerando um dos exercícios com maior conteúdo didático para a arquitetura. Esta comparação, se utiliza do propósito de interpretar um projeto como uma partitura.

Rocha (2011) revisa a fundamentação teórica e procedimental envolvida neste tipo de abordagem junto à arquitetura, reunindo elementos que explicam a lógica de associar arquitetura à música. Destaca que Pitágoras identificava relações numéricas entre os intervalos musicais, representando-as por meio da divisão de um segmento em partes proporcionais. Desta maneira, são demonstrados procedimentos gráficos que instrumentalizam estudos analíticos, ressaltando que sob a concepção pitagórica, a associação de escalas musicais com proporções visuais, está diretamente ligada ao conceito de harmonia.

Junto à área de representação existem ferramentas que facilitam o uso de processos dinâmicos e associativos, de geração e controle da forma, como é o caso do desenho paramétrico. Esta é uma técnica na qual as relações entre os elementos são explicitamente descritas, estabelecendo interdependências entre os objetos (OXMAN, 2006). A atribuição de diferentes valores aos parâmetros pode gerar múltiplas variações, mantendo as condições topológicas da forma.

A modelagem paramétrica se desenvolve em ambientes digitais e se utiliza de algoritmos para a construção da forma. Segundo Terzidis (2006), algoritmos são entendidos como procedimentos para abordar problemas em um número finito de etapas, envolvendo a extração de princípios lógicos. Neste sentido, envolvem dedução, indução, abstração, generalização e uma lógica estruturada.

Neste trabalho, busca-se utilizar o conceito de desenho paramétrico para tratar de conteúdos que muitas vezes ficam no plano figurativo, tais como: ritmo, simetria e proporção. O estudo contribui para alcançar os objetivos de dois projetos: MODELA Pelotas, o qual adota o patrimônio arquitetônico de Pelotas como objeto de representação, e ACORDA, o qual investe na análise e construção de referenciais didáticos para a inserção do desenho paramétrico e prototipagem rápida na formação em arquitetura. Desta maneira, a atividade de redesenho quer contribuir para a ampliação de métodos de construção de conhecimento sobre o patrimônio, apoiar a inserção de técnicas de desenho paramétrico no ensino de graduação e contribuir com a formação para a ação projetual de arquitetura, no âmbito de disciplinas de geometria e representação.

2. METODOLOGIA

A seleção do objeto de estudo foi guiada por um exercício de representação registrado em trabalho anterior (BRUM et al, 2015), valendo-se da conveniência de utilizar uma obra sobre a qual já haviam sido executados um modelo digital tridimensional e maquetes físicas por processos de fabricação digital.

O método de representação apoia-se na descrição de Terzidis (2006) sobre os procedimentos que envolvem o desenvolvimento de um desenho paramétrico: dedução, indução, abstração, generalização e uma lógica estruturada. Parte-se da execução de análises gráficas, semelhantes às apresentadas em Rocha (2011), tratando de identificar, na forma da obra, a rigidez ou não no uso de proporções e regras compositivas. Associa-se esta etapa ao emprego de procedimentos dedutivos, de demonstração por meio de traçados, e ao emprego de procedimentos indutivos, os quais verificam se existe correspondência entre a lógica de associar intervalos musicais a um ritmo arquitetônico atribuído à forma do objeto. Na etapa de redesenho, as relações identificadas são formalizadas por técnicas de desenho paramétrico. Refere-se à etapa de abstração, estabelecendo correspondências entre as linguagens gráfica e algébrica. Ao final, se estabelece a etapa de generalização, com a comprovação das hipóteses que buscam a compreensão do processo de estruturação de lógicas determinadas.

3. RESULTADOS E DISCUSSÃO

A obra refere-se a uma estrutura em ferro do século XIX, o Reservatório R1 (Figura 01), localizado na Praça Piratinino de Almeida, na cidade de Pelotas. Este reservatório é sustentado por uma estrutura pré-fabricada ornada com consoles, grades, molduras e arcos. Na parte superior há um torreão, cujo acesso se dá por meio de uma escada helicoidal, caracterizando-se como um mirante. Este é um dos quatros bens tombados pelo Instituto do Patrimônio Histórico e Artístico Nacional (IPHAN) em Pelotas, portanto ressalta-se sua relevância.

Figura 01: Reservatório R1 em um cartão postal da época de 1912. Fonte: Acervo Arthur B. Matte

De acordo com o método de representação proposto, a análise geométrica gráfica da obra foi realizada sobre plantas baixas, cortes, fachadas e fotografias, identificando-se regras compositivas clássicas, tais como simetrias, recursões, uso de proporções e tripartição. A Figura 02 ilustra algumas das relações encontradas: tripartição e razão áurea. Segundo Rocha (2011), a divisão de um elemento em três partes pode ser relacionada ao princípio platônico da existência de três princípios eternos que constituem o todo: ideias reais (arquétipo de tudo o que se cria), demiurgo (age como organizador do mundo) e matéria (receptáculo das formas criadas). À esquerda, em planta baixa, e nos esquemas à esquerda da fachada, destaca-se a relação de tripartição, dada pela presença de três conjuntos de colunas concêntricas e pela possibilidade de subdivisão da fachada em três segmentos iguais, tanto no torreão como no reservatório como um todo. Os esquemas à direita, demonstram o traçado geométrico da razão áurea, o qual corresponde à sequência numérica de Fibonacci, presente no torreão e no corpo

do reservatório. O uso desta razão é tido como recurso geométrico de ordenamento e mostra a possibilidade de uma evolução guiada (LAWLOR, 1996).

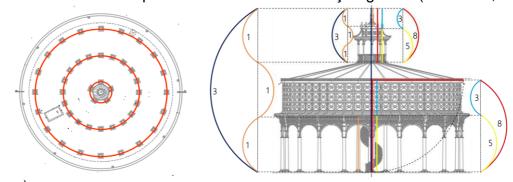


Figura 02: À esquerda, tripartição em planta; à direita, tripartição e razão áurea em fachada. Fonte: Autoras

A ideia de ordenamento da composição pode ser interpretada a partir da relação com uma oitava da escala musical. Verifica-se a existência de relações dois para um, ou o seu oposto, ilustradas na Figura 03. A altura das colunas equivale ao dobro da altura do corpo do reservatório, e no torreão, a altura do pináculo corresponde à metade da distância do guarda corpo até o pináculo.

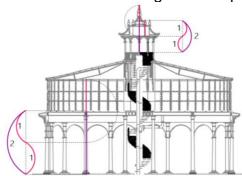


Figura 03: Relações equivalentes a oitava musical. Fonte: Autoras

Na etapa de abstração (parametrização), foram considerados, como ponto de partida, três parâmetros principais para o redesenho: o raio do reservatório, o número de colunas que o sustentam e a altura destas colunas. Estes parâmetros são utilizados como variáveis em operações algébricas para a derivação de valores que dimensionam os demais elementos. A Figura 04 ilustra o modelo digital e descrição paramétrica completa. Na Figura 05 há soluções nas quais são alterados cada um destes três parâmetros de maneira isolada. Nitidamente observa-se a descaracterização da harmonia da composição, tendo em vista que foram alterados sem as restrições identificadas.

Figura 04: Modelo digital e programação visual que o estruturou. Fonte: Autoras

O objeto de estudo se mostrou pertinente para introduzir o exercício de uso de análises gráficas, como as apontadas em Rocha (2011), para a compreensão de ritmos e harmonias utilizados para compor as formas envolvidas. O fato de existir uma lógica implícita, a partir de regras geométricas associadas aos compassos musicais, permite exemplificar um objeto derivado de um processo projetual rigidamente controlado por determinadas relações proporcionais.

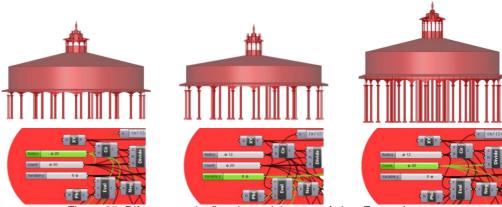


Figura 05: Diferentes soluções do modelo paramétrico. Fonte: Autoras

Desta maneira, este tipo de redesenho se constitui como uma ação de investigação, na qual foram, explicitados elementos que explicam a atribuição de harmonia, ritmo, equilíbrio e beleza à obra. O material produzido demonstra uma maneira de introduzir as técnicas de desenho paramétrico, cujos parâmetros podem ser de diversas naturezas, a partir do método abstraído de Terzidis (2006). Embora, tratando apenas da geometria, insere outra postura, na medida em que o exercício tem exigido revisitar procedimentos projetuais clássicos, para traduzi-los por meio da álgebra. Junto ao aprendizado de geometria e tecnologias de representação estas práticas de redesenho podem promover a construção de um olhar mais atento para a percepção das lógicas subjacentes de composições arquitetônicas, adicionando conteúdo em relação às práticas de representação, seja do desenho de observação, técnico ou de modelagem tradicionais.

4. CONCLUSÕES

Nos termos de Sainz (2009), reforça-se a consideração de que o redesenho seja um dos exercícios de maior conteúdo para a iniciação em arquitetura. Considera-se também que a partir do desenho paramétrico esta atividade pode ser potencializada pela possibilidade de se valer de procedimentos interativos que permitem "congelar" diferentes instâncias do projeto. Este tipo de redesenho mostra-se como uma ferramenta que permite dissecar e comprovar as hipóteses do pensamento de projeto de uma obra, sendo um instrumento de investigação.

Desta maneira, além deste estudo contribuir para reunir informações técnicas e históricas acerca do Reservatório R1, entende-se que o redesenho se revela apropriado não para o ensino de regras, mas para a compreensão de métodos e estratégias empregadas para a delimitação da forma arquitetônica.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BRUM, V.; VECCHIA, L. F. D.; PEDERZOLLI, L.; BORDA, A.B.A.S. Projeto e Execução de modelagem para fabricação digital: aplicação em representação de patrimônio arquitetônico In: **Geometrias & Graphica 2015.** Lisboa:Universidade Lusíada de Lisboa, 2015. v.1. p.1 – 12

OXMAN, R. **Theory and design in the first digital age.** In: Design Studies 27. London: Elsevier, 2006.

LAWLOR, R. **Geometria sagrada**. Madrid: Editora Del Prado, 1996.

ROCHA, A. M. Divina proporção: aspectos filosóficos, geométricos e sagrados da seção áurea. Fortaleza: Expressão Gráfica Editora, 2011.

SAINZ, J. Dibujo de Arquitectura. Madrid: Editora Nerea, 1990.

SANEP, **Caixa D'água.** Acessado em 18 de setembro de 2017. Online. Disponível em: http://www.pelotas.rs.gov.br/sanep/

TERZIDIS, K. Algorithmic Architecture. Burlington: Elsevier, 2006.