



# EFEITOS NA ARQUITETURA FOLIAR DE GENÓTIPOS DE TRIGO COM DUPLA APTIDÃO SUBMETIDOS A DIFERENTES DENSIDADES DE SEMEADURA

MAURICIO FERRARI<sup>1</sup>; IVAN RICARDO CARVALHO<sup>2</sup>; VINÍCIUS JARDEL SZARESKI<sup>2</sup>; DIEGO NICOLAU FOLLMANN<sup>2</sup>; GUILHERME PELISSARI<sup>2</sup>; VELCI QUEIRÓZ DE SOUZA<sup>3</sup>

<sup>1</sup>Universidade Federal de Santa Maria campus de Frederico Westphalen – ferraritatu@gmail.com <sup>2</sup> Universidade Federal de Santa campus de Frederico Westphalen – viniszareski@hotmail.com <sup>3</sup> Universidade Federal de Santa campus de Frederico Westphalen – velciq@gmail.com

# 1. INTRODUÇÃO

O trigo (*Triticum aestivum* L.) com dupla aptidão é uma alternativa para produção de grãos e pastagem para Região Sul, no período de inverno. Os genótipos de trigo de duplo propósito apresentam características como elevada produção de matéria seca, tolerância ao pastejo, corte, e permite adequado rendimento de grãos (DEL DUCA et al. 2000).

Segundo DEL DUCA et al. (2000), o rendimento do trigo duplo propósito se mantém elevado em áreas com pastejo, devido a capacidade de emissão de afilhos, novas folhas e porte menor, permitindo maior aproveitamento da radiação fotossintética.

A densidade de semeadura influência diretamente a produção de afilhos, o rendimento forrageiros e rendimento de grãos (ZAFFARONI et al., 1998), este caráter determina o número ideal de plantas desejadas por área.

A disposição foliar sofre interferências diretas da densidade de semeadura, as variações atreladas à arquitetura foliar possibilita variações na capacidade de interceptação de radiação, balanço hormonal das plantas, sua morfologia e componentes de rendimento.

Objetivou avaliar os efeitos na arquitetura foliar em genótipos de trigo com dupla aptidão submetidos a diferentes densidades de semeadura.

#### 2. METODOLOGIA

O experimento foi conduzido na área experimental do Laboratório de Melhoramento Genético e Produção de Planta da Universidade Federal de Santa Maria, *Campus* de Frederico Westphalen – RS, situado na latitude 27° 23'S, longitude 53° 25'W e altitude de 461m.



O delineamento experimental utilizado foi de blocos ao acaso, em esquema fatorial (5 x 5 ) sendo estes genótipos x densidades, distribuídos em três repetições. Os genótipos utilizados foram BRS Tarumã, BRS Umbu, BRS 277, BRS Guatambu e BRS Figueira, as densidades: 75 s/m²; 150 s/m²; 225 s/m²; 300 s/m²; 375 s/m². As unidades experimentais continham seis linhas de semeadura espaçadas com 0.17 metros e 1.00 metros de comprimento.

A área foliar (cm²) foi determinada através de scanner portátil modelo Licor – 3000 C, para aferir este parâmetro utilizou-se cinco plantas de cada unidade experimental ao acaso

Os dados obtidos foram submetidos à análise de variância pelo teste F a 5 % de probabilidade de erro, ao apresentar interação entre genótipos x densidades, foram desmembradas aos efeitos simples, para o fator densidades submeteu-se análise de regressão linear, as respostas obtidas foram expressas através de gráficos.

## 3. RESULTADOS E DISCUSSÃO

A análise de variância relevou significância para interação genótipos x densidades de semeadura para o parâmetro área foliar no período de afilhamento da cultura do trigo com dupla aptidão.

Em relação a densidade 75 s/m² para o genótipo BRS 277, este expressou superioridade aos demais genótipos estudados. Para a densidade 225 s/m² observou-se que o genótipo BRS Tarumã, apresentou a maior média de área foliar no afilhamento, diferindo-se dos demais genótipos. Os genótipos BRS 277 e BRS Guatambu não se diferiram estatisticamente, sendo que o primeiro obteve uma média superior em relação ao segundo, o qual não se diferenciou dos genótipos BRS Figueira e BRS Umbu.

A capacidade de afilhamento ocorre por diversos fatores, entre eles o sincronismo entre o desenvolvimento foliar e afilhos, conhecido como ocupação de sitio (VALÉRIO et al., 2009).

Dessa forma, o genótipo BRS 277 apresentou melhor arranjo espacial e aproveitamento dos recursos disponíveis, propiciando acréscimos na emissão de afilhos e estes intervêm diretamente sobre área foliar.

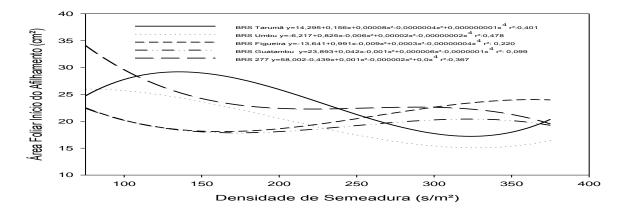
A densidade 150 s/m² evidencia respostas contrastantes em relação as demais, os genótipos BRS Tarumã e BRS Umbu mostram-se superiores aos



demais genótipos. O genótipo BRS 277 diferenciou-se dos genótipos BRS Figueira e BRS Guatambu.

A cultivar BRS Tarumã em densidades baixas potencializa o aproveitamento das condições benéficas impostas a seu genótipo e proporciona elevada capacidade de emissão de afilhos, o que reflete diretamente na área foliar e sobre o rendimento da cultura, seja forrageiro ou grãos. Na densidade de 300 s/m² observa-se que a área foliar dos genótipos BRS 277 e BRS Figueira foram similares ao BRS Guatambu. Entretanto, superiores aos genótipos BRS Tarumã e BRS Umbu. Ao analisar a densidade 375 (s/m²), os genótipos BRS 277, BRS Tarumã e BRS Figueira são silimares.

O genótipo BRS Tarumã e BRS Umbu responderam de forma semelhante ao aumento da densidade de semeadura, em relação a área foliar, demonstram incremento inicial satisfatório até a densidade de 150 s/m², devido a grande capacidade de afilhamento desses genótipos aliados ao arranjo espacial que permite maior desenvolvimento e crescimento das folhas com o propósito de melhor aproveitamento da radiação solar, propicia acréscimos na produção de fotoassimilados pela planta.


O comportamento dos genótipos em densidade de semeadura entre 225 à 300 s/m² observa-se redução na área foliar, este fato enquadra-se como negativo na curva da regressão.

Os genótipos BRS Figueira e BRS Guatambu apresentam comportamento semelhante em relação ao efeito da densidade de semeadura sobre a área foliar. Em menores densidades os genótipos apresentaram acréscimos significativos sobre a área foliar, devido a menor competição intra-específica da espécie permite maior exploração de área de radiação, maior número de folhas e afilhos.

A partir da densidade 225 s/m² observa-se incremento linear na curva da área foliar até a densidade de 300 s/m², a partir dessa densidade observou-se uma estabilidade seguido de leve declínio para densidade 375 s/m².

O comportamento quadrático indica que densidades maiores de semeadura podem ser usadas para aumentar o provimento de forragem no inicio do inverno, ajuda a amenizar menores taxas de crescimento do trigo e evidenciam elevada área foliar (MARTIN et al., 2010).

**Figura 1:** Resposta da área foliar (cm²) dos Genótipos BRS Figueira, BRS Tarumã, BRS 227, BRS Umbu e BRS Guatambu em função de diferentes densidades de semeadura, Frederico Westphalen, 2012.



**Tabela 1:** Área foliar (cm²) de genótipos de trigo com dupla aptidão submetidos a diferentes densidades de semeadura, Frederico Westphalen, 2012.

| Den<br>(s/m²) | BRS 277   | BRS<br>Figueira | BRS<br>Guatambu | BRS Taruma | BRS Umbu |
|---------------|-----------|-----------------|-----------------|------------|----------|
| 75            | 34.107 A  | 22.112 B        | 22.323 B        | 24.828 B   | 25.820 B |
| 150           | 24.215 C  | 19.740 D        | 18.400 D        | 28.587 AB  | 24.573 B |
| 225           | 22.302 B  | 17.066 C        | 18.028 BC       | 24.215 A   | 17.588 C |
| 300           | 22.582 A  | 24.209 A        | 20.630 AB       | 17.318 B   | 16.346 B |
| 375           | 19.510 BC | 23.575 AB       | 19.143 C        | 20.470 BC  | 16.261 C |
| CV (%)        |           |                 | 24.732          |            |          |

<sup>\*\*</sup>Letras maiúsculas semelhantes na mesma linha não diferem entre si por Tukey a 5% de erro.

### 4. CONCLUSÕES

Efeitos do aumento da densidade de semeadura são observados para todos os genótipos de trigo com dupla aptidão, observa-se redução gradual da área foliar na cultura do trigo no período de afilhamento.

#### 5. REFERÊNCIAS BIBLIOGRÁFICAS

DEL DUCA, L. de J. A.; MOLIN, R.; SANDINI, I. Experimentação de genótipos de trigo para duplo propósito no Paraná, em 1999. **Boletim de pesquisa e desenvolvimento, 6.** Embrapa Trigo, Passo Fundo, 2000.

MARTIN, T. N.; SIMIONATTO, C. C.; BERTONCELLI,; P. ORTIZ, S.; HASTENPFLUG, M.; ZIECH, M. F. SOARES, A. B. Fitomorfologia e produção de cultivares de trigo duplo propósito em diferentes manejos de corte e densidades de semeadura. **Ciência Rural**, Santa Maria, v.40, n.8, p.1695-1701, 2010.

VALÉRIO, I. P.; CARVALHO, F. I. F.; OLIVEIRA, A. C.; MACHADO, A. A.; BENIN, G.; SCHEEREN, P. L.; SOUZA, V. Q. de; HARTWING, I. Desenvolvimento de afilhos e componentes do rendimento em genótipos de trigo sob diferentes densidades de semeadura. **Pesquisa Agropecuária Brasileira**, Brasília, v.43, n.3, p.319-326, mar. 2008.

ZAFFARONI, E.; TERRES, A. L.; BEVILAQUIA, G. A. P.; ROBAINA, A. D.; LIMA, D. de; FILHO, P. M. S.;.. Análise de caminho nos componentes do rendimento de genótipos de arroz no Rio Grande do Sul. **Pesquisa Agropecuária Brasileira**, v.33, n.1, p.43-48, 1998.