

PROGRESSO GENÉTICO E FENOTÍPICO EM CARACTERÍSTICAS DE DESEMPENHO AVALIADAS EM ANIMAIS DAS RAÇAS HEREFORD E BRAFORD PARTICIPANTES DO PROGRAMA PAMPAPLUS

BRUNO BORGES MACHADO TEIXEIRA¹; RODRIGO FAGUNDES DA COSTA²; ÂNDREA PLOTZKI REIS³; MARCOS JUN – ITI YOKOO⁵; FERNANDO FLORES CARDOSO^{5,6}.

1 Mestrando do Programa de Pós-Graduação em Zootecnia – UFPel, Brasil. Bolsista CAPES. Email: <u>bteixeira @veterinario.med.br</u>
2 Mestrando do Programa de Pós-Graduação em Zootecnia – UFPel, Brasil. Bolsista CAPES.
3 Mestranda do Programa de Pós- Graduação em Zootecnia – UFPel, Brasil. Bolsista CNPq.
5 Pesquisador A – Embrapa Pecuária Sul-Bagé/RS.
6 Professor permanente do Programa de Pós- Graduação em Zootecnia – UFPel, Brasil. Bolsista de produtividade do CNPq, nível 2.

1. INTRODUÇÃO

A demanda mundial por produção de recursos ultrapassa a busca única pelo aumento geométrico dos índices de produtividade, ocorrendo um entendimento geral da necessidade de aumentar a qualidade do processo produtivo.

Extrapolando para a pecuária de corte, temos que, produzir mais, uma carne de qualidade, que remunere melhor as pessoas envolvidas em todo processo, com bem estar animal, sendo economicamente e ambientalmente sustentável.

Programas de melhoramento animal foram introduzidos na pecuária para identificar animais mais produtivos e "competitivos", ou seja, que atendam as diversas exigências do mercado consumidor, auxiliando o processo de seleção ou direcionando cruzamentos. A utilização destes métodos resulta em melhor desempenho nas características de importância econômica, (ROSO; FRIES, 2000).

O programa de avaliação genética PampaPlus, foi criado, no ano de 2008, na intenção de direcionar o melhoramento genético das raças Hereford e Braford, apresentando uma ferramenta de seleção acessível ao produtor, CARDOSO; LOPA (2010), gerando estimativas de diferenças esperadas na progênie (DEPs) das características de crescimento, escores visuais e reprodutivas, tendo sua metodologia baseada na utilização da melhor predição linear não viesada (BLUP), seguindo a teoria dos modelos mistos descrita por HENDERSON (1949).

Segundo CARDOSO (2010), através de modelos hierárquicos Bayesianos os melhoristas têm uma ferramenta poderosa para descrever a complexidade biológica e ambiental envolvida no desempenho de bovinos de corte, contemplando modelos mais realistas para a variabilidade genética aditiva e as correlações entre parentes, aumentando a precisão das estimativas e melhorando a resposta a seleção.

Através das tendências genéticas e fenotípicas objetivou-se identificar a ocorrência de progresso genético em características de desempenho da população avaliada pelo programa em razão da utilização dos valores gerados de DEPs para seleção dos animais.

2. METODOLOGIA

As características analisadas foram: peso ao nascer (PN), peso ao desmame ajustado para 205 dias (PD205), peso ao sobreano ajustado aos 550 dias

(PS550), ganho pós desmame ajustado para 345 dias (GPD345) e perímetro escrotal ao sobreano (PES), com registro de desempenho de 58.780 animais nascidos de 2007 à 2012 totalizando 87.933 indivíduos na matriz de parentesco.

Para a obtenção das médias *a posteriori* dos valores genéticos (BLUP), foi utilizada metodologia de análise bayesiana pelo programa INTERGEN_v1.2 (Cardoso, 2010), considerando o modelo animal completo, por amostragem de *Gibbs* em métodos de Monte Carlo via Cadeias de Markov (MCMC), com prioris próprias pouco informativas. Para o período de aquecimento (*burn-in*) foram descartadas os primeiros 40.000 ciclos de um total de 440.000 ciclos, salvando amostras a cada 40 ciclos, totalizando 10.000 amostras por arquivo.

O modelo pode ser descrito para todas as observações em notação matricial, pela seguinte equação:

```
y = X\beta + Z_1a + Z_2m + Z_3mpe + e, onde,
```

^y é o vetor de observações;

 eta é o vetor de parâmetros dos efeitos fixos, com matriz de incidência X ;

a é o vetor paramétrico dos efeitos genéticos aditivos diretos, com matriz de incidência $\mathbf{Z}_{\mathbf{I}}$:

 $^{\it m}$ é o vetor paramétrico dos efeitos genéticos aditivos maternos, com matriz de incidência $^{Z_2};$

 mpe é o vetor paramétrico dos efeitos de ambiente permanente materno, com matriz de incidência $^{Z_{\rm 3}};$

e é o vetor do erro.

Tendências genéticas e fenotípicas foram obtidas por regressão linear:

```
y_i = a + bx_i + e_i,
em que,
```

 y_i é a média dos valores genéticos dos animais nascidos no *i*ésimo ano;

a é o intercepto;

 $^{\it b}$ é o coeficiente de regressão linear da média d dos valores genéticos;

 x_i é o *i*ésimo ano de nascimento;

 e_i é o erro aleatório associado a regressão.

3. RESULTADOS E DISCUSSÃO

O PN apresentou coeficientes lineares de 0,0263 (P=0,862) e 0,251 (P=0,087) para valores genéticos e fenotípicos, respectivamente, demonstrando não estar ocorrendo mudança, o que é almejado pelo programa.

Tendência genética significativa foi encontrada para PD205 (figura 1), apresentando um ganho anual de 746 gramas e P = 0,0340 para o teste F, evidenciando ganho genético causado pela seleção para esta característica. Isso pode estar relacionado com o PD205 ser o caractere que tem maior número de informações no programa, sendo que no ano de 2012 nasceu a primeira geração

de bezerros (as), desmamados em 2013, filhos de touros e vacas que foram avaliados na desmama e no sobreano pelo PampaPlus.

Essa tendência genética para PD205 corresponde a 42% do valor de tendência fenotípica, (figura 1), calculado de b=1,763 (P=0,417).

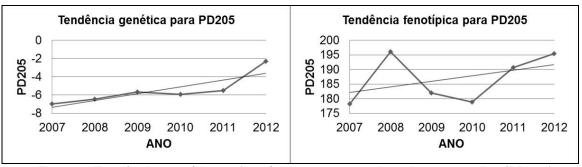


Figura 1. Tendências genéticas e fenotípicas para peso ajustado aos 205 dias (PD205).

Para PS550 (figura 2), também encontrou-se valores positivos e significativos para a tendência genética, com b=0,721 (P=0,048), ou seja, um progresso genético anual superior a 700 gramas, relativo a 37% do valor de tendência fenotípica encontrada para o PS550 ((figura 2), com b=1,957 (P=0,751).

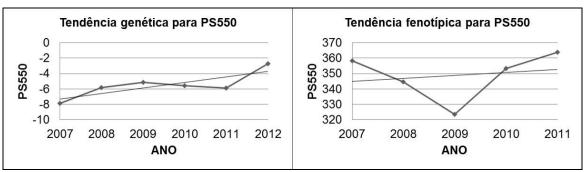


Figura 2. Tendências genéticas e fenotípicas para peso ajustado aos 550 dias (PS550).

Para o GPD345 os coeficientes lineares genéticos e fenotípicos foram positivos de 0,332 (P=0,076) e 1,066 (P=0,872), respectivamente, onde a influência genética desta característica responde a 31% do valor fenotípico.

O incremento genético para PES foi de 0,018 (P=0,222) com mudança no valor fenotípico de 0,077 (P=0,570), não se evidenciando mudanças significativas neste caractere.

Os valores fenotípicos não foram significativos estatisticamente o que pode ser um reflexo dos poucos anos de avaliação do programa, porém dão ideia de incremento positivo nas características avaliadas.

4. CONCLUSÕES

Avanços genéticos desejáveis estão ocorrendo, mediante a seleção dos criadores para as características de crescimento na população Hereford e Braford participante do programa PampaPlus, havendo a possibilidade de aumentar estes

ganhos com a intensificação da utilização dos valores gerados pelo programa como critérios de seleção.

5. REFERÊNCIAS BIBLIOGRÁFICAS

CARDOSO, F. F. Aplicação da Inferência Bayesiana no Melhoramento Animal Usando o Programa Intergen Manual da Versão 1.2. (Documentos / Embrapa Pecuária Sul, ISSN 1982-5390; 111), Embrapa Pecuária Sul. Bagé 2010, 31p.

CARDOSO, F. F.; LOPA, T. P.; **PampaPlus: Avaliação Genética Hereford e Braford,** Bagé, EMBRAPA – Pecuária Sul, 2010, 55p.

HENDERSON, C. R.; Estimation of changes in herd environment. **Journal Dairy Science**. v.32, p.706-711, 1949.

ROSO, V.M.; FRIES, L.A. Avaliação das heteroses maternas e individuais sobre o ganho de peso do nascimento ao desmame em bovinos Angus x Nelore. **Revista Brasileira de Zootecnia**, 29(3):732-737, 2000.