

EXTRAÇÃO DOS ÓLEOS DE CHENOPODIUM QUINOA WILLD E PRUNUS AMYGDALUS BATSCH E PERFIL DE ÁCIDOS GRAXOS

THIELY FERNANDES JACOBSEN¹; BRUNO VARGAS MUCHALE²; BRUNA SILVEIRA PACHECO²; CAMILA FRANCINE PAES NUNES²; CLAUDIO MARTIN PEREIRA DE PEREIRA³

¹Graduanda – Curso de Farmácia / CCQFA - UFPel – thielyjacobsen@yahoo.com.br

²Universidade Federal de Pelotas – UFPel

³Professor no Centro de Ciências Químicas, Farmacêuticas e de Alimentos / CCQFA – UFPel - claudiochemistry@gmail.com

1. INTRODUÇÃO

Atualmente, a extração de óleos vegetais tem se mostrado de grande interesse para o desenvolvimento de biodiesel, principalmente por se tratarem de fontes renováveis, possuírem grande variedade e fácil biodegradabilidade. Além disso, estes vêm substituindo os hábitos alimentares de gorduras saturadas, provenientes principalmente de gordura animal, por estas gorduras monoinsaturadas e poliinsaturadas, encontradas em grande concentração nestes óleos vegetais, fornecendo uma dieta mais saudável (INMETRO, 2012).

Além dos diversos benefícios à saúde humana, o grão de amêndoa chilena ajuda a emagrecer, produz energia e é fonte de proteínas. Assim como a quinoa, um pequeno grão, mas que também possui um grande valor nutricional, composto por proteínas, carboidratos, ferro, fósforo, cálcio e outros elementos. Porém, grande parte da quinoa é composta por carboidratos complexos, que leva mais tempo para ser convertidos em glicose comparando-os com os carboidratos simples, evitando assim o excesso de insulina e um pico de glicemia na corrente sanguínea.

Os ácidos graxos são ácidos carboxílicos com cadeia carbônica longa e podem ser classificados como saturados, monoinsaturados e poliinsaturados (RAMALHO; SUAREZ, 2013). Essa diferença de tamanho, grau de posição da insaturação na molécula lhes confere propriedades físicas, químicas e nutricionais diferentes. A composição em ácidos graxos dos alimentos é de grande importância, principalmente os poliinsaturados das famílias ω -3 que têm se mostrado particularmente úteis na prevenção e tratamento de doenças como dislipidemias, diabetes mellitus e obesidade, apresentando importante efeito cardioprotetor (RAPOSO, 2010) e também o ω -6, enfim ambos com numerosos benefícios ao organismo humano, inclusive efeitos sobre a resposta imune e inflamatória (PERINI et al., 2010).

A quinoa e a amêndoa chilena são ricas em ácidos graxos essenciais como ω -3 e ω -6 e em compostos antioxidantes, como tocoferóis. Portanto, a ingestão de fibras na dieta favorece o funcionamento do intestino, emagrecimento, diminui a absorção do colesterol e outros diversos benefícios.

Os óleos vegetais além de trazer vários benefícios a saúde humana, também tem aplicações como precursores para a síntese de biodiesel (FERRARI et al., 2005), onde são empregados na rota etílica, e como um co-produto oriundo deste processo, se obterá o glicerol, o qual tem se mostrado um grande atrativo para a síntese de diversos compostos, uma vez que este será aproveitado para a síntese de produtos secundários, como o álcool alílico (LIU et al., 2010).

Com base nisso, este trabalho tem como objetivo realizar a extração e comparação do perfil de ácidos graxos entre os óleos vegetais obtidos da

amêndoa chilena (*Prunus amygdalus Batsch*) e da quinoa (*Chenopodium quinoa Willd*).

2. METODOLOGIA

Para uma eficiente extração dos óleos vegetais realizou-se primeiramente a moagem dos grãos utilizando um moinho de facas. A extração da amêndoa chilena e da quinoa foram realizadas em um sistema de soxhlet com 20 g de cada amostra e 250 mL de hexano durante 8 h a uma temperatura de 80° C. O óleo extraído foi separado do solvente extrator com o auxílio do rota evaporador e transferido para frasco âmbar previamente pesado, sendo após calculado o rendimento da extração.

Na realização da análise lipídica, os lipídeos extraídos dos grãos das oleaginosas foram metilados e convertidos aos seus respectivos ésteres metílicos de ácidos graxos seguindo a seguinte metodologia modificada de (MOSS et al., 1974): em balão de 50 mL contendo a fração lipídica acrescentou-se 6 mL de solução de KOH a 2% em metanol (m/v) sob agitação e aquecimento de 80° C, ficando por um período de 8 min em refluxo. Foram adicionados 7 mL de BF₃ (ácido de Lewis) seguindo com agitação por 2 min, para que ocorra a catálise ácida, sendo após adicionados 5 mL da solução de NaCl a 20% (m/v). A amostra foi deixada em repouso até temperatura ambiente, sendo posteriormente transferida para funil de separação juntamente com 20 mL de hexano. A fase orgânica foi separada e seca com 2 g de sulfato de sódio anidro. A evaporação do solvente foi realizado com N_{2(g)} e a amostra pesada para posterior análise em GC/FID 2010 e GC-MS QP 2010S.

3. RESULTADOS E DISCUSSÃO

Após a extração, pode-se observar a diferença de rendimento entre os dois óleos obtidos, conforme a Tabela 1, estes valores podem ter sido influenciados devido o fato de estes grãos serem de regiões de cultivo diferentes. Observou-se melhor rendimento no grão da amêndoa chilena, encontrada em regiões temperadas, sendo as geadas um fator prejudicial para seu desenvolvimento. Já a quinoa é cultivada nos Andes, possuindo elevado grau de resistência à geada, sobrevivendo a -8 °C durante até 4 h, porém em perí odos de inundações pode levar a podridão da raiz, assim reduzindo o rendimento. Outro fator é o vento, responsável pela erosão e secagem das plantas e do solo (JACOBSEN et al., 2003).

Tabela 1. Comparação entre os dois óleos extraídos.

Grão	Grão moído	Óleo extraído	Rendimento
Quinoa	18, 6227 g	03, 4857 g	18,71%
Amêndoa chilena	22, 2112 g	12, 1166 g	54,55%

Para quantificar os ácidos graxos empregou-se a cromatografia gasosa, conforme observado os espectros na Figura 1, onde no cromatograma (a) do óleo de quinoa, os que apresentaram maiores concentrações foram: palmítico, oleico, linoleico (ω – δ) e α -linoleico (ω – δ) respectivamente: 10,059%, 27,042%, 51,568% e 4,093%. Já no grão de amêndoa chilena (b), houve maior concentração de ácido graxo palmítico, oleico e linoleico (ω – δ) do que os demais ácidos graxos,

nas respectivas concentrações: 5,85%, 62,93%, 29,107%, sendo encontrado apenas 0,032% de α -linoleico (ω -3).

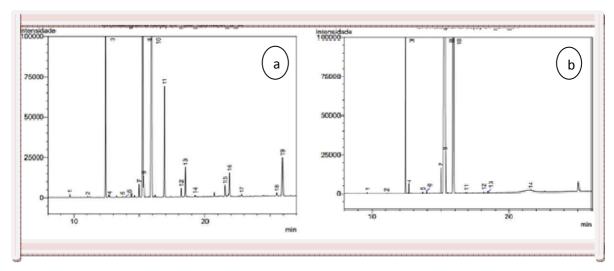


Figura 1. Cromatograma (a) do óleo de quinoa e (b) da amêndoa chilena

Conforme a Tabela 2, pode-se observar todos os ácidos graxos encontrados em cada óleo extraído e suas concentrações, dando destaque aqueles obtidos em maior quantidade.

Tabela 2. Comparação entre percentuais de ácidos graxos em grão de quinoa e amendoa chilena

	Ácido Graxo	Grão de quinoa	Grão de amêndoa chilena		Ácido Graxo	Grão de quinoa	Grão de amêndoa chilena
1	C 14:0	0,099 %	0,028 %	11	C 18:3n3	4,093 %	0,032 %
2	C 15:0	0,051 %	0,009 %	12	C 20:0	0,375 %	0,051 %
3	C 16:0	10,059 %	5,855 %	13	C20:1n9	1,197 %	0,049 %
4	C 16:1	0,083 %	0,212 %	14	C 20:2	0,110 %	
5	C 17:0	0,060 %	0,037 %	15	C 22:0	0,543 %	0,167 %
6	C 17:1	0,060 %	0,075 %	16	C 22:1n9	1,109 %	
7	C 18:0	0,439 %	0,899 %	17	C 22:2	0,136 %	
8	C18:1n9c	27,042 %	62,935 %	18	C 24:0	0,195 %	
9	C 18:1n9t	0,638 %	0,544 %	19	C 24:1n9	2,144 %	
10	C 18:2n6c	51,568 %	29,107 %				

Encontrou-se maior quantidade do ácido oléico (ω -9), na amêndoa chilena, sendo este essencial, pois participa do metabolismo, desempenhando um papel fundamental na síntese dos hormônios e diminui o colesterol - LDL. Além de ser muito utilizado como aditivo em base de sabões, sabonetes e também empregado em cremes e emulsões cosméticas pelas suas propriedades emolientes e para recompor a oleosidade em peles ressecadas e com problemas de escamação.

Segundo as análises realizadas, foram encontrados em maior quantidade de ω -3 e ω -6 na quinoa. Esses ácidos graxos poliinsaturados essenciais, ou seja, apesar de não serem produzidos pelo organismo, são fundamentais para o bom funcionamento de vários órgãos (INMETRO, 2012). Além disso, são precursores da síntese de prostaglandinas e leucotrienos, envolvidos em processos de coagulação e inflamação.

4. CONCLUSÕES

Com este trabalho pode-se obter de maneira eficiente os óleos vegetais, onde o grão de amêndoa chilena apresentou um melhor rendimento, comparado ao de quinoa, através de uma extração relativamente simples, mas que posteriormente serão utilizados como precursores para se obter o glicerol. Também fica claro a extrema importância da ingestão destes grãos na dieta, devido à elevada concentração de ácidos graxos e seus diversos benefícios a saúde.

Tendo em vista um plano de pesquisa onde se almeja agregar valor ao glicerol que é proveniente do biodiesel, que sofrerá transformações para obter o álcool alílico, um reagente muito versátil em síntese orgânica e indústria de polímeros.

5. REFERÊNCIAS BIBLIOGRÁFICAS

FERRARI, R.A.; OLIVEIRA, V.S.; SCABIO, A. Biodiesel de soja: Taxa de conversão em ésteres etílicos, caracterização físico-química e consumo em gerador de energia. **Química Nova**, São Paulo, v. 28, n. 1, p.19-23, 2005.

INMETRO. **Programa de análise de produtos.** Rio de Janeiro, 29 mai. 2012. Consumidor. Acessado em 01 out. 2013. Online. Disponível em: http://www.inmetro.gov.br/consumidor/produtos/nuts.pdf

JACOBSEN, S.E; MUJICA, A.; JENSEN, C.R. The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. **Food Reviews International**, New York, v. 19, n. 1&2, p. 99-109, 2003.

LIU, Y.; TUYSUZ, H.; JIA, C.H.; SCHWICKARDI, M.; RINALDI, R.; LU, A.H.; SCHMIDT, W.; SCHUTH, F. From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. **Chemical Communications**, USA, v. 46, p.1238–1240, 2010.

MOSS, C. W.; LAMBERT, M. A.; MERWIN, W. H. Comparation of rapid methods for analysis of bacterial fatty acids. **Journal of Applied Microbial**, USA, v.28, n.1, p.80-85, 1974.

PERINI, J.A.L.; STEVANATO, F.B.; SARGI, S.C.; VISENTAINER J.E.L.; DALALIO, M.M.O.; MATSHUSHITA, M.; SOUZA, N.E.; VISENTAINER, J.V. Ácidos graxos poli-insaturados n-3 e n-6: metabolismo em mamíferos e resposta imune. **Revista de nutrição**, Campinas, v. 23, n. 6, p. 5-9, 2010.

RAMALHO, H. F.; SUAREZ, P. A. Z. A química dos óleos e gorduras e seus processos de extração e refino. **Revista virtual de química**, Brasília, v. 5, n. 1, p. 2-15, 2013.

RAPOSO, H.F. Efeito dos ácidos graxos n-3 e n-6 na expressão de genes do metabolismo de lipídeos e risco de aterosclerose. **Revista de nutrição**, Campinas, v. 23, n. 5, p. 1-4, 2010.