

RELAÇÃO ENTRE O CONTEÚDO DE FLAVONÓIDES E A CAPACIDADE ANTIOXIDANTE DE EXTRATOS HIDROALCOÓLICOS DE PRÓPOLIS DA CIDADE DE PELOTAS

<u>CRISTINA JANSEN¹</u>; SUZANA TREPTOW²; TAILISE ZIMMER²;RUI CARLOS ZAMBIAZI³

¹Mestranda em Nutrição e Alimentos – UFPel – cris-jansen @hotmail.com

²Acadêmicas do curso de Tecnologia de Alimentos – UFPel –suh_treptow@hotmail.com;

zimmertailise@gmail.com

³Centro de Ciências Químicas, Farmacêuticas e de Alimentos–Universidade Federal de Pelotas
zambiazi@gmail.com

1. INTRODUÇÃO

A própolis é um produto elaborado pelas abelhas através de substâncias resinosas e gomosas, que são coletadas de brotos, flores e exsudados de plantas. As abelhas digerem parcialmente estes materiais através da ação das enzimas contidas nas suas secreções salivares, e após acrescentam ainda cera e pólen, formando finalmente a própolis (MARCUCCI, 1995; BRASIL, 2001; SILVA et al., 2012).

É utilizada em defesa da colmeia, servindo para cobrir frestas, protegendo da entrada de invasores; no preparo de alvéolos assépticos para a postura da abelha rainha; para mumificação de insetos invasores quando estes não podem ser removidos, evitando a proliferação de microorganismos patogênicos e atuando como isolante térmico para a colméia (CASTALDO, CAPASSO, 2002; SALATINO et al., 2005; SILVA et al., 2006; TOSI et al., 2007). Sua utilização ocorre desde as civilizações egípcias, árabes e gregas para tratar diversas doenças, pois possuem atividades biológicas como ação antimicrobiana, anti-inflamatória, antitumoral, cicatrizante, anestésica e antioxidante (PARK et al., 1998).

Estas propriedades são atribuídas a sua composição química, principalmente a presença de fitoquímicos oriundos do metabolismo secundário da planta, incluindo grande quantidade de compostos fenólicos (BANKOVA, 2005; MOREIRA et al., 2008; FROZZA et al., 2013). A própolis contém diversas substâncias com capacidade antioxidante, dentre as quais se destacam as do grupo dos compostos fenólicos, principalmente os flavonóides (DEGASPARI, WASZCZYNSKYJ, 2004; SILVA, 2009).

A atividade antioxidante destes compostos é atribuída principalmente à capacidade de óxido-redução, que permite atuarem na absorção e neutralização dos radicais livres através da doação de hidrogênio e como supressores do oxigênio singlete ou decompondo os peróxidos formados, além de agirem quelando metais (DEGASPARI, WASZCZYNSKYJ, 2004).

A própolis bruta precisa passar por um processo de extração e purificação, para a retirada da cera (CASTALDO e CAPASSO, 2002). A maneira mais usual é a de extrair a fração solúvel em álcool, retendo a fração insolúvel ou cera. Misturas de etanol e água têm sido utilizadas para dissolver a resina e remover as ceras presentes na própolis bruta (PARK et al., 1998; ALIBONI et al., 2011).

O interesse em pesquisas com própolis apresentou elevado crescimento devido ao intenso uso deste composto pela população e pelo valor financeiro agregado aos seus produtos. Estudos têm evidenciado amostras de própolis de regiões tropicais, especialmente as brasileiras, quanto as diferenças na

composição química em relação à própolis oriunda da zona temperada. Por essa razão, a própolis brasileira têm se tornado objeto de grande interesse por parte dos pesquisadores de todo o mundo (TRUSHEVA et al., 2006).

O objetivo deste trabalho é analisar o teor de flavonóides totais e sua relação com a capacidade antioxidante, em extratos hidroalcóolicos de duas amostras de própolis da cidade de Pelotas.

2. METODOLOGIA

As duas amostras de própolis foram coletadas por apicultores da cidade de Pelotas no período de outubro de 2013. Foi triturada em moinho de bola até a obtenção de um pó fino, conforme metodologia adaptado de Silva et al. (2012). Posteriormente preparou-se o extrato com 10g de própolis em 100 mL de etanol a 80% (v/v) para obtenção de um extrato a 10% (1:10 m/v). O extrato foi mantido sob agitação a temperatura por 3 horas. Após esse período a mistura foi filtrada em papel filtro, e posteriormente centrifugada à 150rpm a 10°C por 15 min. O sobrenadante foi removido e congelado em recipientes plásticos a -20°C até o momento das análises.

O método colorimétrico utilizando cloreto de alumínio foi utilizado para determinação do teor de flavonóides conforme metodologia de Mello, Petrus e Hubinger (2010). Para o conteúdo total de flavonóides foram adicionados 100 µL de cloreto de alumínio (AlCl3) 10% em água, e acrescentado 0,5mL do extrato hidroalcoólico de própolis (diluído 1:10 v/v). Após 0,1 mL de acetato de potássio (1M) e 4,3 mL de etanol 80% serão adicionados. A mistura será agitada em vortex e mantida à temperatura ambiente por 40 min. A absorbância da mistura será determinada a 415 nm em espectrofotômetro de UV-visível. A curva de calibração será realizada utilizando soluções de quercetina em etanol (80%), com concentrações variando de 10 a 100 µg.mL-1, e serão expressos em termos de equivalentes de miligrama de quercetina por grama de extrato seco (mg EQ.g-1).

A atividade antioxidante pelo método de sequestro de radicais livres 2,2-difenil-1-picrilhidrazila (DPPH) dos extratos será realizada segundo o método de Brand-Willians et al. (1995) com algumas adaptações. Prepara-se uma solução 0,1 mM de DPPH em etanol e, 1,0 mL desta solução será adicionada a 250 μL das amostras diluídas em etanol 80% com concentrações variando de 5-500 μg/mL. Posteriormente, as soluções serão homogeneizadas em agitador de tubos. As absorbâncias serão obtidas após 30 min. de repouso na ausência de luz, em espectrofotômetro no comprimento de onde de 517 nm, e serão convertidas em porcentagem da atividade antioxidante (AA%) segundo a equação 1: AA% = 100 – {[(Absamostra – Absbranco) x 100] / Abscontrole} (eq. 1)

Os resultados serão expressos em porcentagem de inibição de 50% do extrato, sendo calculados a partir da construção de uma curva analítica para cada amostra, com a porcentagem da atividade antioxidante versus concentração do extrato. Através da equação de regressão linear resultante será então calculada a concentração capaz de inibir 50% (IC50) dos radicais livres de DPPH.

fresca.

Os resultados foram submetidos à análise de Variância (ANOVA) e pelo teste de comparação de médias (Tukey) em nível de 5% com o programa S.A.S. versão 8.0.

3. RESULTADOS E DISCUSSÃO

Na tabela 1 podem-se observar os resultados obtidos nas análises de flavonoides e capacidade antioxidante dos extratos de própolis de Pelotas.

Tabela 1. Resultados do conteúdo total de flavonóides e capacidade antioxidante por DPPH de amostras de extratos hidroalcoólicos de Pelotas.

Amostras	Flavonóides (mg de quercetina.g ⁻¹ de amostra)	DPPH (EC ₅₀ μg/mL)
Pelotas 1	22,92 ^a	27,28 ^a
Pelotas 2	18,79 ^a	27,51 ^a

Letras iguais na mesma coluna não diferenciam significativamente pelo teste de Tukey (p<0,05).

Não houve diferença significativa quanto às duas amostras de própolis analisadas. Segundo pesquisas a composição química da própolis pode ser relacionada com as condições climáticas e a diversidade botânica disponível na região. Isto influencia diretamente suas atividades biológicas como a antioxidante (TOSI et al., 2007; CHAILLOUA, NAZARENO, 2009).

No método de capacidade antioxidante através do radical DPPH ocorreu mudança de cor roxa para amarela, pois quando o radical DPPH reage com um composto antioxidante que pode doar hidrogênio, ele é reduzido ocorrendo a descoloração (GÜLÇIN et al., 2010). Quanto menor o valor de IC₅₀ maior a capacidade de sequestro dos radicais livres que o composto apresenta.

Um estudo de GÜLÇIN et al. (2010) encontrou valores de IC₅₀ de 31,81ug/ml, valores superiores e portanto evidenciando menor acapacidade antioxidante do que encontro neste trabalho. E quando o autor comparou o extrato com o hidroxitolueno butilado (BHT), aditivo alimentar com função antioxidante e conservante, o extrato de própolis foi superior ao do IC₅₀ do BHT que foi de 48,42ug/ml.

CHAILLOUA e NAZARENO (2009), relacionaram a alta atividade antioxidante da própolis com o conteúdo de alguns flavonoides como a quercetina, o ácido siríngico, kaempferol, ácido caféico, ácido clorogênico e ácido 3-4 dihidroxibenzóico. Estes compostos minimizam a peroxidação lipídica, interferindo não apenas na propagação e formação dos radicais livres, mas também quelando metais e inibindo enzimas envolvidas no início da reação (RUSSO et al., 2002).

4. CONCLUSÕES

Pode-se concluir que o conteúdo de flavonóides presentes nos extratos de própolis está diretamente relacionado à ação antioxidante atribuída a própolis. Como ambas as amostras apresentam conteúdo similar de flavonoides e ação antioxidante, também foi possível concluir que não há grandes variações climáticas e de vegetais nas própolis da região estudada.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALIBONI, A.; D'ANDREA, A.; MASSANISSO, P. Treatment of propolis specimens from Central Italy to yield a product with a lower charge of allergenic species. **Separation and Purification Technology**, v. 82, p. 71–75, 2011.

BANKOVA, V.Recent trends and important developments in propolis research. **Evidence Based Complementary and Alternative Medicine**, v. 2, p. 29–32, 2005.

BRASIL. Ministério da Agricultura, Pecuária e do Abastecimento. Instrução Normativa nº 3, de 19 de janeiro de 2001. Aprova os regulamentos Técnicos de Identidade e Qualidade de Apitoxina, Cera de Abelha, Geléia Real, Geléia Real Liofilizada, Pólen Apícola, Própolis e Extrato de Própolis, conforme consta dos Anexos desta Instrução Normativa. **Diário Oficial da União** de 23/01/2001, Seção 1, Página 18.

CASTALDO C.; CAPASSO, F. Propolis, an old remedy used in modern medicine. **Fitoterapia**, v. 73 (Supl. 1), p. S1-S6, 2002.

CHAILLOUA, L. L.; NAZARENO, M. A. Bioactivity of propolis from Santiago del Estero, Argentina, related to their chemical composition. LWT - Food Science and Technology, v. 42, p. 1422–1427, 2009.

DEGASPARI, C.H.; WASZCZYNSKYJ, N. Propriedades Antioxidantes de compostos fenólicos. **Visão Acadêmica**, Curitiba, v. 5, n. 1, p.33-40, 2004.

FROZZA, C. O. da S.; GARCIA, C. S. C.; GAMBATO, G.; SOUZA, M. D. O. de; SALVADOR, M.; MOURA, S.; PADILHA, F. F.; SEIXAS, F. K.; COLLARES, T.; BORSUK, S.; DELLAGOSTIN, O. A.; PÊGAS, J. A.; ROESCH-ELY, M. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. **Food and Chemical Toxicology**, v. 52, p. 137–142, 2013.

GÜLÇIN, I.; BURSAL; SEHITOGLU, M. H.; BILSEL M.; GÖREN, A. C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. **Food and Chemical Toxicology**, v. 48, p. 2227–2238, 2010.

MARCUCCI, M.C. Propolis: chemical composition, biological properties and therapeutic activity. **Apidologie**, v.26, p. 83–99, 1995.

MOREIRA, L.; DIAS, L. G.; PEREIRA, J. A.; ESTEVINHO, L. Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. **Food and Chemical Toxicology**, v. 46, p. 3482 – 3485, 2008.

PARK, Y. K.;IKEGAKI, M.; ABREU, J. A. S.; ALCICI, N. M. F. Estudo da preparação dos extratos de própolis e suas aplicações. **Revista Ciência e Tecnologia de Alimentos**, v. 18, n. 3, p. 313-318, 1998.

RUSSO, A.; LONGO, R.; VANELLA, A. Antioxidant activity of própolis: role of caffeicacid phenethyl ester an galang. **Fitoterapia**, v. 73, Suppl. 1, p. 21-29, 2002.

- SALATINO, A., TEIXEIRA, E. W., NEGRI, G., & MESSAGE, D. Origin and chemical variation of Brazilian propolis. **Evidence Based Complementary and Alternative Medicine**, v. 2, p. 33–38, 2005.
- SILVA, A. F. da. **Própolis: caracterização físico-química, atividade antimicrobiana e antioxidante**. 2009. 126f. Tese (Doutorado em Ciência e Tecnologia de Alimentos), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos. Universidade Federal de Viçosa, Viços, Minas Gerais.
- SILVA, J. C.; RODRIGUES, S.; FEÁS, X.; ESTEVINHO, L. M. Antimicrobial activity, phenolic profile and role in the inflammation of própolis. **Food and Chemical Toxicology**, v. 50, p. 1790–1795, 2012.
- SILVA, R. A. da; RODRIGUES, A. E.; RIBEIRO, M. C. M.; CUSTÓDIO, A. R.; ANDRADE, N. E. D.; PEREIRA, W. E. Características físico-químicas e atividade antimicrobiana de extratos de própolis da Paraíba, Brasil. **Revista Ciência Rural**, Santa Maria, v.36, n.6, p.1842-1848, 2006.
- TOSI, E. A.; RÉ, E.; ORTEGA, M. E.; CAZZOLI, A. F.; Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. **Food Chemistry**, v. 104, n. 3, p. 1025-1029, 2007.
- TRUSHEVA, B., POPOVA, M., BANKOVA, V., SIMOVA, S., MARCUCCI, M. C., MIORIN, P. L. Bioactive constituents of Brazilian red propolis. **Evidence Based Complementary and Alternative Medicine**, v. 3, p. 249–254, 2006.