

ESTUDOS ELETROQUÍMICOS EM MICROEMULSÃO DE BIODIESEL

JOSÉ DILSON FRANCISCO DA SILVA¹; YARA PATRÍCIA DA SILVA²; CLARISSE MARIA SARTORI PIATNICKI²; CARLA ROSANE BARBOZA MENDONÇA³

¹Universidade Federal de Pelotas - CCQFA – dilson13@gmail.com ² Universidade Federal do Rio Grande do Sul – IQ ³ Universidade Federal de Pelotas - CCQFA – carlaufpel@hotmail.com

1. INTRODUÇÃO

Alquil ésteres de ácidos graxos, também conhecidos como biodiesel, têm conquistado considerável importância econômica (MONYEM; GERPEN, 2001; FERRARI et al., 2005). Segundo a Agência Nacional Brasileira de Petróleo, Gás Natural e Biocombustíveis (ANP), biocombustíveis são derivados de biomassa renováveis que podem substituir, parcial ou totalmente, combustíveis derivados de petróleo e gás natural em motores a combustão ou em outro tipo de geração de energia (ANP, 2014).

Cerca de 45 % da energia e 18 % dos combustíveis consumidos no Brasil já são renováveis. No mundo, 86 % da energia vem de fontes energéticas não-renováveis. Pioneiro mundial no uso de biocombustíveis, o Brasil alcançou uma posição almejada por muitos países que buscam fontes renováveis de energia como alternativas estratégicas ao petróleo (BRASIL, 2014). Ainda, comparado ao diesel de petróleo o biodiesel também apresenta vantagens ambientais significativas (ÖZENER et al., 2014; PULLEN; SAEED, 2012).

No entanto, a autoxidação de biodiesel puro (B100) dá origem a produtos de oxidação secundários, isto é, epóxidos, álcoois, aldeídos e cetonas, que podem causar danos aos motores de combustão (KNOTHE, 2007). Por essa razão a estabilidade à oxidação do B100 é um critério de qualidade que tem de ser monitorado regularmente. Assim sendo, o controle de qualidade do biodiesel é extremamente importante para o sucesso de sua comercialização e aceitação nos mercados nacional e internacional. Atualmente, o método utilizado para caracterizar a estabilidade oxidativa é o período de indução de oxidação acelerada, Rancimat (AOCS Method Cd 12b-92), o qual, no entanto, requer várias horas para sua execução (AOCS, 1992). Novas metodologias eletroanaliticas em meios resistivos têm sido propostas alargando assim seu campo de aplicação para a quantificação de analitos em combustíveis.

Neste estudo, objetivou-se avaliar o emprego de uma microemulsão de água em óleo (ME A/O) como meio solvente para viabilizar determinações eletroanalíticas diretas de espécies dissolvidas em B100.

2. METODOLOGIA

Materiais

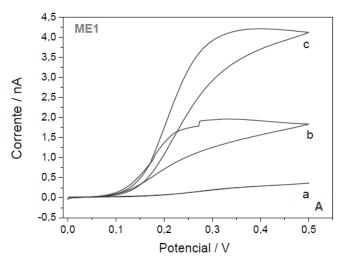
O éster metílico de ácidos graxos de óleo de soja (biodiesel de soja) foi cedido por uma usina de biodiesel do Rio Grande do Sul.

Medidas voltamétricas

Nas medidas voltamétricas foi utilizado um potenciostato/galvanostato µAUTOLAB TYPE III e uma célula eletroquímica de três eletrodos. Como eletrodo

de trabalho utilizou-se um ultramicroeletrodo (ume) de Pt (PAR com diâmetro de 10 µm) e como contra eletrodo uma fita de Pt. Para evitar a interferência do KCl, utilizou-se um fio de Pt como eletrodo de pseudo-referência. Todas as medidas foram realizadas à temperatura ambiente numa gaiola de Faraday e os dados foram tratados nos softwares GPES e Origin. Para melhorar a repetitividade dos resultados o eletrodo de trabalho foi limpo antes de cada medida por imersão em ácido sulfúrico concentrado, em banho de ultrassom, por 5 minutos, seguindo-se o mesmo procedimento de limpeza em água destilada por mais 5 minutos.

Foram realizadas medidas de voltametria potenciodinâmica de 0,000 a 0,500 V, a 1 mV s⁻¹, varreduras direta e inversa, utilizando-se ferroceno (Fc) como sonda (3,4 e 6,8 x10⁻³ mol L⁻¹ de Fc); também medidas de voltametria de pulso diferencial (VPD) a 5 mV s⁻¹, entre 0,000 e 2,000 V e amplitude de 10 mV, novamente com Fc como sonda (1,2 e 2,1 10⁻³ mol L⁻¹).


Preparo da microemulsão

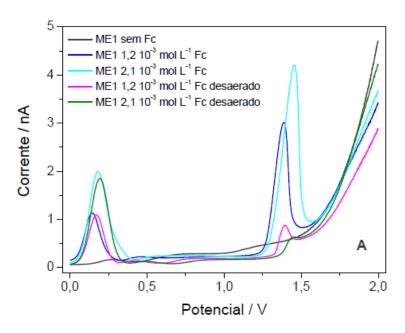
A microemulsão, denominada ME1, foi preparada com base em um sistema ternário desenvolvido por MENDONÇA et al. (2009), sendo o óleo de soja substituído por biodiesel de soja. Misturou-se o surfactante (dodecil sulfato de sódio – SDS) e o co-surfactante (pentanol) na razão 1:4 sendo esta mistura denominada pseudofase. Em seguida foram adicionados B100 e água, nesta seqüência, com posterior agitação mecânica por 10 minutos. A observação da formação da ME foi evidenciada através de sua transparência visual. A composição final foi de 9,0 % de água, 28,0 de biodiesel e 63,0 % de pseudofase.

3. RESULTADOS E DISCUSSÃO

A Figura 1 apresenta os resultados da voltametria potenciodinâmica obtidos em microemulsão (ME1), na ausência e presença de Fc.

O Fc tem por função definir um potencial de referência no meio em estudo, para que se possa, posteriormente, determinar o potencial de oxidação de espécies de interesse no biodiesel.

Figura 1. Voltametria potenciodinâmica em ume de Pt (10 μm de raio) de 0,000 a 0,500 V, a 1 mV s⁻¹, varreduras direta e inversa, para ME1 (a) sem Fc, (b) 3,4 10⁻³ mol L⁻¹ Fc e (c) 6,8 x10⁻³ mol L-1 de Fc. Eletrodo de quase referência e contra eletrodo em Pt.


Os resultados mostram que após a adição de ferroceno aparece uma onda de oxidação cuja corrente aumenta linearmente com a concentração de Fc e que a velocidade da reação é limitada pelo processo de difusão. O potencial de meia onda, E_{1/2}, foi de 215 mV.

Observa-se ainda um degrau de aproximadamente 11 nA na corrente limite, este comportamento sugere que parte do Fc adicionado está na fase dispersa, provavelmente, na gotícula. Sendo assim, o envoltório das gotículas, aparentemente, se rompe na superfície do eletrodo liberando o Fc ou, ainda, o Fc difunde do interior da gotícula para a superfície do eletrodo onde sofre oxidação.

A voltametria de pulso diferencial é mais sensível do que a voltametria cíclica e a linear, pois a corrente é medida para uma razão entre a corrente faradaica e capacitiva (BOND, 1980).

Estudando a oxidação do Fc em meio aquoso por VPD BOND et al., (1987) relataram uma fraca adsorção sobre o eletrodo, mas concluíram que, mesmo assim, o par redox Fc+/Fc pode ser usado como um sistema de referência neste meio.

A seguir são apresentadas medidas de VPD na ME estudada (Figura 2).

Figura 2. Voltametria de pulso diferencial em ume de Pt (10 μm de raio) entre 0,000 e 2,000 V, a 5 mV s⁻¹, 10 mV de amplitude e largura do pulso 50 ms. Amostras desaeradas com N₂ por 10 minutos. Eletrodo de quase referência e contra eletrodo em Pt.

Observa-se que aparece um pico de corrente (ip), em um potencial (Ep) em torno de 0,100 V, que duplica de valor com o dobro de Fc adicionado. Na mesma varredura, em torno de 1,400 V há um segundo pico de corrente, o qual também aumenta com a concentração de Fc. Quando o sistema é desaerado, o primeiro pico permanece inalterado, mas o segundo praticamente desaparece. Logo, o segundo pico está associado à presenca de Fc e de oxigênio.

4. CONCLUSÕES

Medidas potenciodinâmicas e de pulso diferencial na microemulsão de biodiesel, adicionadas de Fc, indicaram correntes limite e de pico de oxidação variando proporcionalmente à concentração de Fc.

A técnica de voltametria de pulso diferencial associada ao uso de ultramicroeletrodo, empregando microemulsão de água em óleo, mostrou resultados com menores interferências e poderia ser aplicada para a quantificação de espécies dissolvidas em biodiesel, sem pré tratamento da amostra.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ANP. **Biocombustíveis.** Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro, 28 jul. 2014. Acessado em 28 jul. 2014. Online. Disponível em: http://www.anp.gov.br/?id=470

AOCS. American oil Chemists, Society. **Official and tentative methods of the American Oils Chemists Society**. Champaign, 1992.

BOND, A.M.; MCLENNAN, E.A.; STOJANOVIC, R.S.; THOMAS, F.G.; Assessment of conditions under which the oxidation of ferrocene can be used as a standard voltammetric reference process in aqueous media. **Analytical Chemistry**, v.59, n.24, p.2853-2860, 1987.

BOND, A. M. Modern Polarographic Methods in Analytical Chemistry. New York: Dekker, 1980.

FERRARI, R. A.; OLIVEIRA, V. S.; SCABIO, A. Biodiesel de soja – taxa de conversão em ésteres etílicos, caracterização físico-química e consumo em gerador de energia. **Química Nova**, São Paulo, v.28, n.1, p.19-23, 2005.

KNOTHE, G. Some aspects of biodiesel oxidative stability. **Fuel Processing Technology**, Philadelphia, v.88, p.669–677, 2007.

MONYEM, A.; GERPEN, J. H. V. The effect of biodiesel oxidation on engine performance and emissions. **Biomass and Bioenergy**, Philadelphia, v.20, p.317–325, 2001.

ÖZENER, O.; YÜKSEK, L.; ERGENÇ, A.T.; ÖZKAN, M. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. **Fuel**, Philadelphia, v.115, p.875-883, 2014.

PULLEN, J.; SAEED, K. An overview of biodiesel oxidation stability. **Renewable and Sustainable Energy Reviews**, Philadelphia, v.16, n.8, p.5924–5950, 2012.