

REAÇÃO A BRUSONE NA MASSA DE GRÃOS POR ESPIGA DE GENÓTIPOS DE TRIGO: PARTE DE ESTUDO DE PROTOCOLOS

<u>JÉDER DA ROCHA MATTOS¹</u>; AMANDA VALENTINI BASEGGIO²; VIVIANE KOPP DA LUZ³; EDUARDO VENSKE⁴; ANTONIO COSTA DE OLIVEIRA⁵; LUCIANO CARLOS DA MAIA⁶

¹Universidade Federal de Pelotas – <u>jederrocha@outlook.com</u>
²Universidade Federal de Pelotas – <u>amanda_baseggio@hotmail.com</u>
³Universidade Federal de Pelotas – <u>vivikp05@hotmail.com</u>
⁴Universidade Federal de Pelotas – <u>eduardo.venske@yahoo.com.br</u>
⁵Universidade Federal de Pelotas – <u>acostol@gmail.com</u>
⁶Universidade Federal de Pelotas – <u>lucianoc.maia@gmail.com</u>

1. INTRODUÇÃO

A cultura do trigo (*Triticum aestivum* L.) apresenta papel de destaque entre os cereais, ocupando o segundo lugar na produção mundial, possuindo importante função econômica e social (USDA, 2020). No Brasil, o trigo é explorado economicamente principalmente nas regiões Sul, Sudeste e Centro-Oeste, concentrando o cultivo na região Sul, responsável por 87% da produção nacional, com destaque para os estados do Paraná e Rio Grande do Sul (CONAB, 2020). A produção brasileira de grãos está em torno de 6,8 milhões de toneladas, em uma área pouco maior que 2 milhões de hectares (CONAB, 2021).

Entre os fatores que limitam a produtividade do trigo, as doenças possuem grande relevância. Dentre estas doenças, está a brusone do trigo, causada por um patógeno fúngico (*Pyricularia oryzae* patótipo *Triticum*) (VALENT et al., 2019). Os sintomas da brusone podem aparecer em folhas, colmos e espigas, mas o dano mais significativo e conhecido ocorre nas espigas. A infecção das espigas pode deixá-las brancas a partir do ponto de infecção do patógeno na ráquis. A infecção nas ráquis interrompe a translocação de fotossintatos para as partes superiores da espiga, o que determina que os grãos sejam pequenos, enrugados, deformados e com baixo peso (LAU et al., 2020). A intensidade do dano é determinada pelo momento que ocorre a infecção e pelo órgão afetado na planta. As maiores perdas são observadas quando a infecção é precoce, com início nas fases de florescimento e formação de grãos (GOULART et al., 2007).

As condições favoráveis para a ocorrência da brusone são períodos chuvosos, temperaturas entre 24 e 28 °C, dias nublados e alta umidade relativa do ar. Em condições ambientais de temperatura média de 27 °C e molhamento foliar superior a 10 horas, as perdas podem ser de até 100% (MOREIRA et al., 2020). O emprego de cultivares resistentes constitui no melhor método de controle da doença, tanto pelo aspecto econômico como ambiental (ROCHA et al., 2014). Apesar de esforços e importantes avanços em relação à disponibilidade de cultivares de trigo com níveis superiores de resistência à brusone, o controle da doença com base na resistência genética ainda não é satisfatório (MACIEL, 2018).

Diante do exposto, o objetivo deste trabalho foi avaliar a reação a brusone sobre a massa de grãos por espiga em genótipos de trigo submetidos a diferentes períodos de inoculação, sendo parte de um estudo de protocolos de avaliação da resistência à moléstia.

2. METODOLOGIA

O experimento foi conduzido à campo em 2019, em São José do Ouro – RS (SJO) e Capão do Leão – RS (CAP). Foram utilizadas linhagens F₈ de trigo desenvolvidas pelo Centro de Genômica e Fitomelhoramento (CGFT-5, CGFT-9, CGFT-B8 e CGFT-B9) e quatro cultivares comerciais, duas suscetíveis (OR Marfim e TBIO Noble) e duas resistentes a brusone (TBIO Audaz e TBIO Toruk).

O delineamento experimental utilizado foi de blocos inteiramente casualizados, com quatro repetições, em arranjo fatorial 2x8x3 (locais de cultivo, genótipos de trigo e tratamentos de inoculação). Na semeadura, foi adotada a densidade populacional próxima de 350 sementes m⁻², com espaçamento entre linhas de 17 cm. Cada parcela da área experimental foi constituída por 0,51 m de largura e 2 m de comprimento, totalizando 1,02 m² por unidade experimental. Os tratos culturais dos experimentos foram feitos com pulverizador costal, sendo iguais para todas as parcelas até o início da floração. As aplicações fúngicas foram compostas por Azoxystrobin + Cyproconazole / Trifloxystrobin + Protioconazol / Tebuconazole + Trifloxystrobin, respectivamente.

As aplicações da inoculação do patógeno foram feitas com pulverizador costal de CO₂. Dos quatro isolados de *P. oryzae* disponíveis para inoculação, todos foram testados previamente para determinar qual possuía maior severidade, sendo utilizado o patótipo *Triticum*, proveniente de Viçosa-MG. As plantas foram submetidas a três tratamentos de inoculação: 1) ausência de inoculação [Testemunha- (Ino)]; 2) inoculação do patógeno no início do florescimento (In1); 3) inoculação do patógeno com 50% do florescimento. Utilizou-se nas parcelas inoculadas no início do florescimento, em ambos locais, a concentração de 110 mil esporos mL-1 e para as parcelas inoculadas com 50% do florescimento 126 mil esporos mL-1 (NETO et al., 2010; ARAUJO; PRABHU,2002; ARENDT, 2006).

Ao final do ciclo reprodutivo, foi realizada a colheita aleatória de cinco plantas de cada parcela e após, realizada a avaliação dos genótipos para o caráter massa de grãos por espiga (MGE, em g), obtido da pesagem dos grãos da espiga. A partir dos dados obtidos foi realizada a análise de variância (p≤0,05) e posteriormente o teste de agrupamento de médias de acordo com Scott-Knott a 5% de probabilidade de erro. A análise estatística foi realizada com o auxílio do software R, através da interface RStudio (RACINE, 2012).

3. RESULTADOS E DISCUSSÃO

Houve interação significativa entre local e genótipo e entre genótipo e inoculação. Na Tabela 1 são apresentados os resultados para o caráter massa de grãos por espiga dos genótipos nos dois locais de cultivo. Pode-se verificar que os genótipos CGF-5 e CGF-B8 apresentaram médias inferiores em CAP. No entanto, CGF-B8 apresentou a maior média em relação aos demais genótipos em SJO, juntamente com os genótipos TBIO Noble e TBIO Toruk, em CAP.

Tabela 1. Massa de grãos por espiga (gramas) de oito genótipos de trigo no município de São José do Ouro (SJO) e Capão do Leão (CAP), na safra de 2019.

Genótipos	SJO	CAP
CGF-5	0,89 Ba*	0,78 Bb
CGF-9	0,78 Ca	0,80 Ba
CGF-B8	1,22 Aa	0,97 Ab
CGF-B9	0,91 Ba	0,85 Ba
OR Marfim	0,82 Ca	0,85 Ba
TBIO Audaz	0,97 Ba	0,88 Ba
TBIO Noble	0,99 Ba	1,04 Aa
TBIO Toruk	0,96 Ba	0,95 Aa

^{*}Médias seguidas pela mesma letra maiúscula, nas colunas, e por letras minúsculas nas linhas, não diferem entre si, a 5% de probabilidade, pelo teste de Scott-Knott.

Os resultados dos genótipos de trigo submetidos a três distintas inoculações no florescimento (Tabela 2), demonstraram que CGF-B8 apresentou menor massa de grãos por espiga na Ino 0, sendo observado um incremento, inesperado, nas Ino 1 e Ino 2. Já, o genótipo OR Marfim, apresentou suscetibilidade aos tratamentos, com maior média na Ino 0, e redução na massa de grãos por espiga nas Ino 1 e Ino 2. A infecção por brusone reduz significativamente a largura, comprimento, peso e volume dos grãos de trigo em comparação com grãos saudáveis, não-infectados (SUROVY et al., 2020). Os danos causados pela doença provocam redução no rendimento produtivo e causam impactos diretos na qualidade dos grãos e no peso de grãos por espiga (GOULART et al., 2007).

Tabela 2. Massa de grãos por espiga (gramas) de oito genótipos de trigo em três distintas inoculações no florescimento, sendo ausência de inoculação (testemunha) (Ino 0), início do florescimento (Ino 1) e 50% de florescimento (Ino 2), em 2019.

Genótipos	Inoculações		
	lno 0	lno1	lno2
CGF-5	0,87 Ba*	0,78 Ca	0,86 Ca
CGF-9	0,80 Ba	0,80 Ca	0,76 Da
CGF-B8	1,01 Ab	1,13 Aa	1,16 Aa
CGF-B9	0,87 Ba	0,90 Ba	0,85 Ca
OR Marfim	0,95 Aa	0,76 Cb	0,79 Db
TBIO Audaz	0,89 Ba	0,92 Ba	0,96 Ba
TBIO Noble	1,04 Aa	1,01 Ba	1,00 Ba
TBIO Toruk	0,96 Aa	0,98 Ba	0,92 Ca

^{*}Médias seguidas pela mesma letra maiúscula, nas colunas, e por letras minúsculas nas linhas, não diferem entre si, a 5% de probabilidade, pelo teste de Scott-Knott.

4. CONCLUSÕES

A inoculação com o patógeno não afetou a massa de grãos por espiga da maioria dos genótipos de trigo, exceto para a cultivar OR Marfim, que se mostrou suscetível, e CGF-B8, que apresentou resistência ao patógeno. O protocolo mostrou eficiência, mas deverá ser melhorado.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO, L. G.; PRABHU, A. S. Indução de variabilidade na cultivar de arroz Metica-1 para resistência a *Pyricularia grisea*. **Pesquisa Agropecuária Brasileira**, v. 37, n. 12, p. 1689-1695, 2002.

ARENDT, Pablo. F. **Resistência de genótipos de trigo à brusone**. 2006. 75 f. Dissertação (Mestrado em Agronomia) - Curso de Pós-Graduação em Agronomia, Universidade de Passo Fundo, Passo Fundo, 2006.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira: grãos, sexto levantamento, safra 2020/2021. 2021. Disponível em:https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira de grãos: Décimo segundo levantamento, safra 2019/2020. 2020. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.

GOULART, A.C.P.; SOUSA, P.G.; URASHIMA, A.S. Danos em trigo causados pela infecção de *Pyricularia grisea*. **Summa Phytopathologica**, v.33, n.4, p.358-363, 2007.

LAU, D.; SBALCHEIRO, C. C.; MARTINS, F. C.; SANTANA, F. M.; MACIEL, J. L. N.; FERNANDES, J. M. C.; COSTAMILAN, L. M.; LIMA, M. I. P. M.; KUHNEM, P.; CASA, R. T. Principais doenças do trigo no sul do Brasil: diagnóstico e manejo. Embrapa Trigo. Comunicado Técnico Online, 375. Passo Fundo, RS: Embrapa Trigo, 2020.

MACIEL, J. L. N. Diseases affecting wheat: wheat blast. In: OLIVER, R. (Org.), **Integrated disease management of wheat and barley**. Cambridge: Burleigh Dodds Science Publishing, 2018. p. 155-169

MOREIRA, C.; CAMACHO, M.A.; GRAICHEN, F.A.S. Redução da severidade da brusone do trigo com aplicação foliar de sulfato de zinco. **Summa Phytopathologica**, v.46, n.3, p.255-259, 2020.

NETO, J. J. D.; SANTOS, G. R. DOS; NETO, M. D. DE C.; ANJOS, L. M. DOS; CUNHA, A. C. F. Y.; IGNÁCIO, M. Influência do meio de cultura na esporulação de *Magnaporthe grisea* e da concentração de conídios na severidade da brusone do arroz. **Bioscience Journal**, v. 26, n. 2, 2010

RACINE, J. S. RSTUDIO: A Platform-Independent Ide For R and Sweave on Jstor. **Journal of Applied Econometrics**, v. 27, n. 1, p. 167-172, 2012.

ROCHA, J.R.A.S.C.; PIMENTEL, A.J.B.; RIBEIRO, G.; SOUZA, M.A. Eficiência de fungicidas no controle da brusone em trigo. **Summa Phytopathologica**, v.40, n.4, p.347-352, 2014.

SUROVY, M.Z.; MAHMUD, N.U.; BHATTACHARJEE, P.; HOSSAIN, M.S.; MEHEBUB, M.S.; RAHMAN, M., et al. Modulation of nutritional and biochemical properties of wheat grains infected by blast fungus *Magnaporthe oryzae Triticum* pathotype. **Frontiers in microbiology**, v. 11, p. 1174, 2020.

USDA – World Agriculture Supply and Demand Estimates. 2021. Disponível em: https://www.usda.gov/oce/commodity/wasde.

VALENT, B.; FARMAN, M.; TOSA, Y.; BEGEROW, D.; FOURNIER, E.; GLADIEUX, P.; ISLAM, M. T.; KAMOUN, S.; KEMLER, M.; KOHN, L. M.; LEBRUN, M.-H.; STAJICH, J. E.; TALBOT, N. J.; TERAUCHI, R.; THARREAU, D.; ZHANG, N. *Pyricularia graminis-tritici* is not the correct species name for the wheat blast fungus: Response to Ceresini et al. **Molecular Plant Pathology**, v. 20, n. 2, p.173-179, 2019.