

PROPRIEDADES DE PASTA DE AMIDO DE CASTANHA PORTUGUESA (Castanea Sativa Mill) MODIFICADO COM ANIDRIDO OCTENIL SUCCINICO

ALANA COUTO PEREIRA 1; ALINE TAÍS STREIT2; BARBARA BIDUSKI3; ROSANA COLUSSI4

- ¹ Discente do Curso de Bacharelado em Química de Alimentos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel)-alanacoutop @outlook.com
- ² Discente do Curso de Engenharia de Alimentos, Faculdade de Engenharia e Arquitetura (FEAR) Universidade de Passo Fundo (UPF) – streitaline @gmail.com
- ³ Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo – barbara.bidusk@gmail.com
- ⁴ Docente do Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel) rosana_colussi@yahoo.com.br

1. INTRODUÇÃO

Nos últimos anos a indústria de amido vem crescendo amplamente, levando à busca de produtos com características específicas que atendem as exigências do mercado. A busca por fontes alternativas como a Castanha Portuguesa (*Castanea Sativa Mill*) e a produção de amidos modificados é uma alternativa que foi desenvolvida com o objetivo de superar limitações relacionadas à variações de pH e temperatura e assim, aumentar a utilidade deste polímero em aplicações alimenticias proporcionando melhor estabilidade de emulsões, cremosidade, melhorando a claridade da pasta e aumentando a textura (COSTA et al., 2018).

A introdução de diferentes substituintes na estrutura do amido tem sido amplamente utilizada para melhorar as propriedades físicas, tais como a solubilidade em água, textura, viscosidade, aderência e resistência ao calor, sem as quais limitam a utilização em alimentos, produtos têxteis, cosméticos e produtos farmacêuticos (LIU et al.,2008). O amido pode ser modificado por processos físicos, químicos ou enzimáticos. Nas reações químicas, ocorre a introdução de grupos substituintes na molécula, onde a estrutura de pelo menos uma unidade de D-glucose é alterada (RUTENBERG; SOLAREK, 1984). Uma das modificações químicas vastamente utilizadas na indústria de alimentos é a modificação com Anidrido Octenil Succinico (OSA). Os amidos OSA são obtidos a partir da reação de esterificação entre os grupos hidroxila do amido e anidrido octenil succínico adicionado ao meio reacional (GAO et al., 2021).

A formação de gel ou pasta é um dos principais fatores que controlam a textura e a qualidade dos alimentos contendo amido (LII, SHAO, TSENG, 1995). A substituição química das cadeias com grupos succinatos resulta na inibição da estrutura ordenada da pasta de amido, desse modo retardando a retrogradação e resultando em pastas mais fluidas e de claridade melhorada (GAO et.al., 2021).

Apesar de se conhecer os efeitos da modificação com OSA em fontes convencionais como amidos milho, trigo, mandioca e batata ainda são escassas as informações sobre a modificação de fontes alternativas. Assim, o objetivo deste estudo foi avaliar as propriedades de pasta de amido de castanha portuguesa modificado com diferentes concentrações de anidrido octenil succinico.

2. METODOLOGIA

As modificações do amido de castanha nativo foram realizadas no Laboratório de Análises de Matérias Primas e Produtos Alimentícios no prédio do Curso de Química de Alimentos da Universidade Federal de Pelotas, as analises de RVA foram realizadas na Universidade de Passo Fundo. A castanha portuguesa (*Castanea Sativa Mill*) foi cultivada em um municipio da região norte do estado do Rio Grande do Sul, e os reagentes utilizados foram de padrão analítico. Após a extração do amido, a modificação foi conduzida conforme a metodologia descrita por Liu et al (2008) pelo método titulométrico

A determinação do grau de substituição foi conduzido de acordo com a metodologia proposta por Liu et al (2008). Uma alíquota de amido OSA (5 g, b.s.) foi dispersa por agitação durante 30 min em 25 ml de solução de HCl 2,5 M em álcool isopropílico. Logo foi adicionado 100 mL de álcool isopropílico 90% e a suspensão foi agitada levemente por 10 minutos. Em seguida a amostra foi filtrada através de um filtro de papel e o resíduo lavado com solução a 90% de álcool isopropílico até que todo CI- fosse completamente removido. O amido foi novamente disperso em 300 ml de água destilada, após a dispersão foi submetida a gelatinização em banho de água fervente durante 20 min. A solução de amido foi titulada com uma solução padrão de NaOH 0,1 M, usando fenolftaleína como indicador

As propriedades viscoamilográficas dos amidos foram avaliadas por RVA - Rapid Visco Analyser (modelo RVA-4, Newport Scientific, Austrália), por meio do perfil Standard Analysis 1 utilizando-se 3,0 g de amostra corrigida para 14% de umidade. As amostras foram aquecidas a 50 °C em 1 min e, posteriormente, a 95 °C em 3,5 min, sendo mantidas a 95 °C durante 2,5 min. Posteriormente foram resfriadas para 50 °C em 3,8 min e mantidas a 50 °C por 2 min. A velocidade de rotação foi mantida a 960 rpm durante 10 s e então mantida a 160 rpm durante o restante do processo. Avaliou-se o pico de viscosidade, viscosidade mínima, viscosidade final, tendência à retrogradação e a temperatura de pasta.

As análises foram realizadas em triplicata. Os resultados foram submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste de Tukey com nível de 5% de significância.

3. RESULTADOS E DISCUSSÃO

Na Tabela 1 está apresentado o grau de substituição do amido de castanha modificado com diferentes concentrações de OSA.

Tabela 1. Grau de substituição de amido de castanha modificado com diferentes concentrações de anidrido octenil succinico.

Concentração de OSA (%)	Grau de substituição (%)		
2	0,0086±0,0005 c		
4	0,0194±0,0006 b		
8	0,0240±0,0001 a		

^{*}Valores acompanhados por letra minúscula na mesma coluna para cada propriedade diferem estatisticamente (p <0,05).

O aumento na concentração de OSA durante o processo de modificação proporcionou a obtenção de amidos com diferentes graus de substituição (GS), sendo que quanto maior foi a concentração de OSA utilizada, maior foi o grau de substituição obtido. De acordo com a Portaria nº 42/98, os amidos modificados quimicamente, se utilizados pela indústria alimentar, deverão obedecer a

especificações recomendadas pelo Food and Drug Administration - FDA (2007). Segundo o FDA, é permitido um nível máximo de 3%. Com isso pode-se classificar os resultados encontrados no presente estudo como baixo GS e, portanto, com caracteristicas adequadas para a aplicação na indústria alimentícia.

Na Tabela 2 estão apresentadas as propriedades de pasta do amido de castanha nativo e modificado com diferentes concentrações de OSA.

Tabela 2. Propriedades de pasta de amido de castanha nativo e modificado com diferentes concentrações de anidrido octenil succinico

dem andremed democraticações de amando esterm edecimos							
Concentração de OSA (%)	PV (RVU)	VM (RVU)	Quebra (RVU)	VF (RVU)	Retr. (RVU)	TP (°C)	
Nativo	329,8±4,3 c	252,9±5,5 b	76,9±1,2 d	392,8±4,2 a	139,9±1,3 a	74,7±0,5 a	
2	409,3±3,2 b	292,9±1,9 a	116,3±1,3 c	402,4±0,3 a	109,5±1,5 b	71,8±0,0 b	
4	451,9±7,1 a	279,1±8,9 a	172,8±1,8 a	356,8±2,4 b	77,6±6,5 c	69,1±0,6 bc	
8	427,9±6,3 b	283,1±0,5 a	144,8±5,8 b	346,2±1,1 c	63,1±0,6 d	67,1±1,1 c	

PV: Pico de viscosidade (RVU); VM: Viscosidade mínima (RVU); VF: Viscosidade final (RVU); Retr.: Retrogradação (RVU); TP: Temperatura de pasta (°C). *Valores acompanhados por letra minúscula na mesma coluna para cada propriedade diferem estatisticamente (p <0,05)

O pico de viscosidade, a viscosidade máxima, a viscosidade final, a retrogradação e a temperatura de pasta reduziram com a inserção dos grupos succínicos na molécula de amido.

O pico de viscosidade aumentou significativamente com a modificação com o OSA, sendo verificado que o pico foi maior no amidos modificado com 4%. Este resultado demonstrou que o aumento da concentração de OSA na reação não favoreceu um comportamento linear de aumento do pico de viscosidade. De acordo com Oliveira, et al., (2014) o aumento do grau de substituição torna os amidos mais hidrófibicos, o que pode justificar os menores valores das propriedades de pasta dos amidos modificados com 8% de OSA. Bertolini et al., (2005) e Sarmento et. al., (2009) ao esterificarem amidos de mandioca e batata, respectivamente, reportaram reduções na viscosidade final viscosidade miníma. Os maiores valores para a quebra de viscosidade foram obtidos para os amidos modificados, evidenciando uma possivel instabilidade no início do aquecimento, sob agitação.

O amido nativo apresentou grande tendencia a retrogradação, diferente das amostras de amidos modificados. A redução da retrogradação é de grande interesse na industria de sopas, pudins e molhos; podendo os amidos serem destinados a este fim. Os resultados obtidos vão ao encontro dos reportados por Malluceli et al. (2015) onde os autores reportam que a modificação com OSA auxiliou na obtenção de amidos com menor tendencia a retrogradação durante o resfriamento. A menor temperatura de pasta, foi constatada no amido succilado 8% (67,1°C), seguido pelo 4% (69,1°C). Amidos com temperaturas de pasta mais baixas apresentam maior potencial para aplicação em alimentos, principalmente naqueles de preparo instantâneo, pois atingem as características ideais mais rapidamente.

4. CONCLUSÕES

O incremento na concentração de anidrido octenil succinico favoreceu maior grau de substituição aos amidos, e o aumento aconteceu proporcionalmente a adição do OSA. O grupo succínico interferiu significativamente nas propriedades viscomilográficas do amido modificado. Após a modificação, ocorreu redução na temperatura de pasta e na tendência à retrogradação, sendo o nível de redução

mais intenso no amido OSA de maior grau de substituição. Os amidos modificados apresentaram características de interesse para muitas aplicações industriais, tais como pastas mais resistentes à retrogradação e mais viscosas, e a intensidade destas alterações é proporcional à quantidade de grupos succínicos inseridos no amido. A modificação com diferentes concentrações de anidrido octenil succinico proporcionou a elaboração de amidos com características diferenciadas, podendo ter sua aplicação em diferentes setores da indústria de alimentos.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BERTOLINI, A. C.; CREAMER, L. K.; EPPINK, M.; BOLAND, M. Some Rheological Properties of Sodium Caseinate-Starch Gels. **Journal of Agricultural and Food Chemistry**. v. 53, n. 6, 2005.

COSTA NETO, J.; SILVA, R.; AMARAL, P.; LEÃO, M. R.; GOMES, T.; SANT'ANA, G. Extraction, chemical modification by octenyl succinic and characterization of cyperus esculentus starch. **Polímeros**, v. 28, n. 4, p. 319-322, 2018.

FOOD AND DRUG ADMINISTRATION - FDA. Food starch modified: code of federal regulation. Washington, 2007.

GAO, W.; SUI, J.; LIU, P.; CUI, B.; ABD EL-ATY, A. M. Synthetic mechanism of octenyl succinic anhydride modified corn starch based on shells separation pretreatment. **International Journal of Biological Macromolecules**, v. 172, p. 483-489, 2021.

LII, C. Y.; SHAO, Y. Y.; TSENG, K. H. Gelation mechanism and rheological properties of rice Starch. **Cereal Chemistry**, v. 72, n. 4, p. 393-400, 1995.

LIU, Z.; LI, Y.; CUI, F.; PING, L.; SONG, J.; RAVEE, Y.; JIN, L.; XUE, Y.; XU, J.; LI, G.; WANG, Y.; ZHENG, Y. Production of Octenyl Succinic Anhydride-Modified Waxy Corn Starch and Its Characterization. **Journal of Agricultural Food Chemistry**, v. 56, n. 23, p. 11499–11506, 2008.

MALUCELLI, LC, LACERDA, LG, DA CARVALHO FILHO, MAS, FERNÁNDEZ, DER, DEMIATE, IM, OLIVEIRA, CS, & SCHNITZLER, E. Amido de milho ceroso poroso. **Journal of Thermal Analysis and Calorimetry**, v. 120, n. 1, p 525-532, 2015.

OLIVEIRA, C. S., ANDRADE, M. M. P., COLMAN, T. A. D., DA COSTA, F. J. O. G., & SCHNITZLER, E. Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. **Journal of Thermal Analysis and Calorimetry**, v. 115, n. 1, p 13-18, 2014.

RUTENBERG, M. W.; SOLAREK, D. **Starch: Chemistry and Technology**. 2a ed. San Diego: Academy, p. 311-388, 1984.

SARMENTO, S. B. S; GONÇALVES, M. F. V.; DIAS, S. T. S.; MARQUEZINI, N. Tratamento térmico do amido de batata-doce (Ipomoea batatas L.) sob baixa umidade em micro-ondas. **Ciência e Tecnologia de Alimentos**. v. 29, n. 2, p. 270-276, abr./ jun. 2009.