

PROPAGAÇÃO DE OLIVEIRA 'KORONEIKI' POR ESTAQUIA

IGOR MÜLLER DUMMER¹; MARIANA SWENSSON²; VAGNER BRASIL COSTA³; PAULO CELSO DE MELLO-FARIAS⁴

¹UNIVERSIDADE FEDERAL DE PELOTAS – igordummer@hotmail.com ²UNIVERSIDADE FEDERAL DE PELOTAS – mari_swensson@hotmail.com ³UNIVERSIDADE FEDERAL DE PELOTAS – vagnerbrasil@gmail.com ⁴UNIVERSIDADE FEDERAL DE PELOTAS – mello.farias@ufpel.edu.br

1. INTRODUÇÃO

O Brasil possuí cerca de 7.000 hectares com a cultura da oliveira (*Olea europaea* L.) e mais de 70 rótulos de produtos oriundos da espécie em território nacional (IBRAOLIVA, 2023). O cultivo no país é crescente, principalmente pelo seu potencial econômico e benefícios à saúde humana dos seus produtos (DOS SANTOS et al., 2023). Esta espécie é oriunda do Mediterrâneo, sendo cultivada em diferentes países e caracterizando-se pela produção de azeites e azeitonas de mesa (RAMOS et al., 2022).

A produção de mudas de espécies arbóreas/arbustivas por meio de técnicas de propagação vegetativa possui diversos benefícios econômicos, com bastante agilidade na produção e em menor período de tempo, sendo bastante difundida (FOLADORI-INVERNIZZI et al., 2021). Da mesma forma, para demais espécies frutíferas, a propagação vegetativa tem avançado e apresenta maior viabilidade no processo de produção de mudas, pois gera clones geneticamente idênticos às plantas matrizes. A oliveira possui sementes viáveis, mas a produção de mudas de modo sexuado gera grande variabilidade genética e um período de juvenilidade extremamente longo (FACHINELLO et al., 1995; DA SILVA et al., 2023). Assim sendo, a produção assexuada de mudas por estaquia é o método de propagação mais difundido e com maior viabilidade para produção de mudas de Olea europaea L., pois mantém características genéticas idênticas às plantas matrizes, precocidade de produção e maior uniformidade fenológica (FOLADORI-INVERNIZZI et al., 2021). DA SILVA et al. (2023) corroboram que a utilização da propagação vegetativa consiste em técnica simples, de baixo custo e rápida, que permite a produção de grande número de plantas e em espaço limitado, com bastante uniformidade e preservando características genéticas da planta matriz.

A cultivar Koroneiki corresponde a uma das principais variedades de oliveira plantadas mundialmente, sendo destinada à obtenção do azeite. O fruto possui elevado teor de óleo e polifenóis, apresentando alta estabilidade de óleo, sendo recomendado o cultivo em sistemas modernos de produção com altas densidades de plantio (PENSO et al., 2016).

Objetivou-se com esta pesquisa avaliar a resposta propagativa de estacas de oliveira submetidas a tratamento com dose única de ácido indol butírico, em dois substratos distintos, sendo estes perlita expandida e Carolina Soil® (LVII).

2. METODOLOGIA

As estacas foram obtidas de ramos de plantas matrizes sadias da cultivar Koroneiki, localizadas na estação experimental da Palma (UFPel). O experimento foi implantado e avaliado no município do Capão do Leão – Rio Grande do Sul, na Faculdade de Agronomia Eliseu Maciel, que está localizada a 31º 48' 13" S e 50º 24' 54" O, com altitude de 21 metros.

Para a propagação das estacas foram utilizadas bandejas de plástico, com 50 estacas por tratamento, sendo o primeiro tratamento com substrato perlita expandida e o segundo tratamento com substrato Carolina Soil® (LVII). As estacas foram obtidas de ramos de plantas usadas exclusivamente para obtenção de material propagativo. O tamanho médio das estacas foi de 10 cm, com presença de uma folha, e foram submetidas à imersão por 5 segundos em solução de 2.000 ppm de ácido indol butírico (AIB). A implantação do experimento foi feita no dia 30/05/2023, conduzido no interior de casa de vegetação, em um sistema de irrigação por aspersão intermitente. O tempo de aspersão foi de 5 segundos com intervalos de 10 minutos entre os períodos de aspersão para manter a qualidade fitotécnica das estacas e evitar desidratação do material. O experimento foi avaliado após 100 dias da instalação, onde foram mensuradas as variáveis: sobrevivência (%), mortalidade (%), formação de calo (%) e enraizamento (%). A medição das variáveis foi feita com o auxílio de paquímetro digital e régua milimetrada. O delineamento experimental foi feito em blocos casualizados e para as análises estatísticas foi utilizado o software Rbio, por meio do teste de Tukey a 5% de probabilidade.

3. RESULTADOS E DISCUSSÃO

No ambiente estudado, foram obtidos resultados estatisticamente distintos para as variáveis formação de calo e enraizamento, como pode ser observado na Tabela 1. Para as variáveis de sobrevivência e mortalidade, observou-se diferenças entre os substratos, porém sem diferença significativa entre os mesmos. Dito isso, para a sobrevivência, o maior valor foi obtido no substrato Carolina Soil®, e para a variável de mortalidade, o substrato perlita resultou em maiores perdas de estacas.

Tabela 1. Taxas de sobrevivência (%), mortalidade (%), formação de calo (%) e enraizamento (%) de estacas de oliveira 'Koroneiki'. Capão do Leão. 2023

Tratamento	Sobrevivência	Mortalidade (%)	Formação de calo Enraizamento (%)	
	(%)		(%)	
Perlita	44 a	56 a	20 a	2 b
Carolina Soil	48 a	52 a	14 b	4 a
C.V. (%)	9,41	9,26	22,78	40,82

Médias seguidas de mesma letra na coluna não diferem estatisticamente pelo teste de Tukey a 5%.

As variáveis formação de calo e enraizamento mostraram-se estatisticamente distintas, sendo que a formação de calo foi maior no substrato perlita, e para o enraizamento o maior resultado foram obtidos no substrato Carolina Soil®.

Conforme observou CUNHA et al. (2009), as temperaturas baixas reduzem a capacidade de produção de estacas, pois o aumento da temperatura é necessário para um bom enraizamento das mesmas. Por meio desta afirmação é possível entender a baixa capacidade de enraizamento das estacas durante o período invernal. Além disso, OLIVEIRA et al. (2003) mencionam que o substrato exerce função importante além da sustentação da planta, pois influencia na disponibilidade de água e oxigênio para o processo de rizogênese. Os autores relatam que o substrato que possui maior capacidade de retenção de água e suficiente porosidade para uma boa drenagem apresenta resultados interessantes no processo do enraizamento. Essa afirmação pode explicar a razão do Carolina Soil® apresentar uma maior taxa de enraizamento quando comparada à perlita, conforme observado na Tabela 1. OLIVEIRA et al. (2009) evidenciam a maior formação de calos no substrato perlita, da mesma forma o presente estudo evidencia um aumento na formação de calos com uso do mesmo substrato.

4. CONCLUSÕES

Por meio dos resultados obtidos no presente trabalho, foi possível verificar que, no ambiente estudado, o substrato perlita permitiu uma maior percentagem de formação de calo quando comparado ao substrato Carolina Soil®, apresentando diferença estatística significativa. Porém, o substrato Carolina Soil® apresentou maior percentagem de enraizamento quando comparado ao substrato perlita, também com diferença estatística significativa.

5. REFERÊNCIAS BIBLIOGRÁFICAS

DA SILVA, W.M.; LACERDA, L.A.; ROMAN, L.N.; NETO, D.C.O.R.; ROMAN, A.M.S.; ROMAN, M.L. Propagação vegetativa de manjericão (*Ocimum basilicum* L.) por estacas de diferentes posições cultivadas sob diferentes substratos. **Scientific Electronic Archives**, Rondonópolis, v. 16, n. 5, 2023.

CUNHA, A. C. M. C. M.; PAIVA, H.N.; LEITE, H.G.; BARROS, N. F. LEITE, F.P. Relações entre variáveis climáticas com produção e enraizamento de miniestacas de eucalipto. **Revista Árvore**, Viçosa, v. 33, p. 195-203, 2009.

DOS SANTOS, F.F.; STRASSBURGER, A.S.; DE MAGALHÃES BANDEIRA, J.; COUTINHO, E.F.; DE MORAES, D.M.; DA SILVEIRA SILVEIRA, S.F. Germinação e Aclimatação de Oliveira cv. Arbequina. **Revista Científica Rural**, Bagé, v. 25, n. 1, p. 339-356, 2023.

FACHINELLO, J.C.; HOFFMANN, A.; NACHTIGAL, J.C.; KERSTEN, E.; FORTES, G.R.L. **Propagação de plantas frutíferas de clima temperado**. 2. ed. Pelotas: UFPel, 1995. 178p.

FOLADORI-INVERNIZZI, S.; DE ALMEIDA MAGGIONI, R.; ZUFFELLATO-RIBAS, K.C. Estado da arte da propagação vegetativa por estaquia de espécies arbustivo-arbóreas. **Revista Eletrônica Científica da UERGS**, Porto Alegre, v. 7, n. 1, p. 50-63, 2021.

IBRAOLIVA. **Instituto Brasileiro de Olivicultura**. 2023. Disponível em: https://www.ibraoliva.com.br. Acesso em: 21 de maio de 2023.

OLIVEIRA, A. F.; PASQUAL, M; CHALFUN, N. N. J.; REGINA, M. A. R.; RINCÓN, C.D.R. Enraizamento de estacas semilenhosas de oliveira sob efeito de diferentes épocas, substratos e concentrações de ácido indolbutírico. **Ciência e Agrotecnologia**, Lavras, v. 27, p. 117-125, 2003.

OLIVEIRA, A. F.; CHALFUN, N. N. J.; ALVARENGA, A. A.; NETO, J. V.; PIO, R.; OLIVEIRA, D. L. Estaquia de oliveira em diferentes épocas, substratos e doses de AIB diluído em NaOH e álcool. **Ciência e Agrotecnologia**, Lavras, v. 33, p. 79-85, 2009.

PENSO, G.A., SACHET, M.R., MARO, L.A.C., PATTO, L.S.; CITADIN, I. Propagação de oliveira 'Koroneiki' pelo método de estaquia em diferentes épocas, concentrações de AIB e presença de folhas. **Revista Ceres**, Viçosa, v. 63, p. 355-360, 2016.

RAMOS, P.D.P.; MELLONI, R.; SILVA, N.L.P.; MELLONI, E.G.P.; FERREIRA, G.M.D.R.; SILVA, L.F.D.O.D.; SILVA, T.A.C.D. Isolamento, caracterização de rizobactérias e análise da produção de ácido indolacético visando ao enraizamento de estacas de oliveira (*Olea europaea* L.). **Ciência Florestal**, Santa Maria, v. 31, p. 1612-1630, 2022.