

APLICAÇÃO DA ANÁLISE DO MODO DE FALHA (FMEA) PARA O DESENVOLVIMENTO DE UMA MÁQUINA PARA COLHER FRUTO DO AÇAÍ

TIAGO LOPES BERTOLDI¹; MAURO FERNANDO FERREIRA²; ÂNGELO VIEIRA DOS REIS³ FABRÍCIO ARDAIS MEDEIROS⁴

¹ Universidade Federal de Pelotas – tlbertoldi @gmail.com ² Universidade Federal de Pelotas – maurof @ufpel.edu.br ³ Universidade Federal de Pelotas – areis <u>@ufpel.edu.br</u> ⁴ Universidade Federal de Pelotas – medeiros.ardais @gmail.com

1. INTRODUÇÃO

A espécie palmeira juçara, de nome científico *Euterpe edulis Mart* é de origem nativa e de porte alto que se desenvolve principalmente no bioma da Mata Atlântica (VIANNA, 2023). Possui em seu palmito e frutos (açaí) os principais interesses econômicos para seu cultivo. O extrato de seus frutos apresenta altos níveis de minerais essenciais, compostos antioxidantes e óleos de alta qualidade nutricional (SILVA, 2013).

Existe um crescente interesse na produção de açaí na região de Mata Atlântica no norte do Rio Grande do Sul e sul de Santa Catarina, segundo BERTOLDI; MEDEIROS (2023), mas apresenta carência de tecnologias de coleta dos frutos, expondo os produtores a atividades fatigantes e de risco de acidentes.

Seguindo o modelo de fases ou método de projeto consensual, utilizado por ROZENFELD, et al. (2006) foi desenvolvido uma máquina para a colheita de açaí. Desta forma através da mecanização da tarefa se buscou o aumento da produção assim como da qualidade de vida dos produtores minimizando o desgaste físico e exposição a acidentes.

Dentre as atividades proposta pelo projeto consensual, existe uma que orienta a confecção de protótipos e através da manipulação do aparato físico, testes e ensaios obtêm-se respostas intrínsecas aos processos de manufatura, operação e desempenho (WILTGEN, 2022).

O método de análise dos modos de falha e seus efeitos, conhecido como FMEA (Failure Mode and Effect Analysis) é utilizado como uma ferramenta complementar, aplicada ainda nas fases de desenvolvimento, com ela busca-se evitar falhas no projeto de produto ou de processo, por meio da análise das falhas potenciais identificadas e aplicação das propostas de ações de melhorias desenvolvidas (ROZENFELD et.al., 2006).

Conforme TOLEDO et al., (2013) uma etapa comum da FMEA é a determinação do número de prioridade do risco (NPR), obtida através da multiplicação dos índices severidade dos efeitos da falha (S) que indica o quão grave é a falha para o cliente, a probabilidade de ocorrência da falha (O) refere-se as chances de o produto falhar enquanto é utilizado, já es chances da falha ser percebida pela equipe de projeto antes do produto ser disponibilizado ao cliente é denominado de probabilidade de detecção da falha (D).

O objetivo deste trabalho foi observar o funcionamento de um protótipo de máquina para colher açaí durante uma simulação de trabalho, em seguida aplicar a técnica FMEA e com ela priorizar os pontos que oferecem risco de dano ao cliente, compreender os problemas e como contorná-los e após tomadas as providências reavaliar a prioridade de risco.

2. METODOLOGIA

O protótipo físico desenvolvido no projeto consensual foi submetido a pista de ensaio realizados nas dependências da Faculdade de Agronomia Eliseu Maciel (FAEM), Departamento de Engenharia Rural (DER), Núcleo de Inovação em Máquinas e Equipamentos Agrícolas (NIMEq). Simulou-se uma palmeira com o auxílio de uma seção de poste de madeira 3,55m de comprimento e diâmetro de aproximadamente 0,18m, próximo do diâmetro médio encontrado na literatura para o estipe (tronco) da palmeira juçara (0,20m).

O projeto geral da máquina foi dividido em duas etapas, a fase 1 compreendido pelos sistemas de fixação, propulsão e controle e a fase 2 que trata do desenvolvimento da ferramenta de corte, não abordada neste trabalho. Cada subsistema desdobra-se por possuir mais de uma função, assim como produzir diferentes efeitos caso falhe.

Os índices de severidade, ocorrência e detecção foram determinados por meio de atribuição de parâmetros, estão apresentados no Quadro 1.

Quadro 1: índices de critérios de avaliação S, O e D.

Quadro I. malece de emenes de avallação e, e e 5.										
Índice de Severidade (S)	Índice de Ocorrência (O)	Índice de Detecção (D)							
Perigoso sem aviso prévio	10	Muito Alta: falhas	10	Absoluta Incerteza	10					
Perigoso com aviso prévio	9	persistentes		Muito Remota						
Muito Alto	8	Alta, falkas fraguentas	8	Remota	8					
Alto	7	Alta: falhas frequentes	7	Muito Baixa	7					
Moderado	6		6	Baixa	6					
Baixo	5	Moderada: falhas ocasionais	5	Moderada						
Muito Baixo	4	ocasionais	4	Moderadamente Alta						
Menor	3	Baixo: relativamente	3	Alta						
Muito Menor	2	poucas falhas	2	Muito Alta						
Nenhum	1	Remota: falha improvável	1	Quase Certamente						

O fator NPR foi obtido de acordo com a Equação (1):

$$NPR = S \times O \times D$$
 Equação (1)

Onde:

S = Índice de Severidade (adimensional)

O = Índice de Ocorrência (adimensional)

D = Índice de Detecção (adimensional)

Para cada subitem a técnica FMEA indica que se aponte a função do produto, o tipo de falha potencial, seu efeito, causa e seu controle atual, bem como considerar um índice para S, O e D conforme quadro 1. Para este trabalho o NPR1, inicial, foi determinado pela observação dos testes com o protótipo inicial. O NPR2 tem origem ao retificar os índices para S, O e D conforme as alterações feitas no protótipo influenciadas por NPR1.

3. RESULTADOS E DISCUSSÃO

O fim da execução dos projetos informacional e conceitual, culminou em um conceito de máquina, desenvolvido em ferramenta CAD, este protótipo virtual gerou uma série de expectativas e dúvidas na equipe de projeto uma vez que até então as considerações eram somente especulações a respeito do funcionamento da máquina. Com isto optou-se pela construção de um protótipo físico para testes, oportunizando a observação dos distintos sistemas em funcionamento. Ao utilizar a técnica de FMEA, pode-se perceber fragilidades e antever problemas no projeto.

No Quadro 2 estão expostos os itens que apresentaram NPR ≥ 50, isto é, destacam-se pela sua prioridade de risco e demandam intervenção, de modo que estes sejam atenuados ou sanados.

Quadro 2 : Itens com prioridade de risco (R≥ 50), necessidade de intervenção.

			Follog	Efaita de	1 - 1,								
Produto/ processo F		Função	Falha potencial	Efeito da falha	Causa da falha	Controle atual	NPR1	NPR2					
Sistema de fixação													
Amplitude de so operação do chassi dife diâm es		Manter a tensão aplicada aos pontos de apoio sobre os diferentes diâmetros do estipe da palmeira	Perder o contato com a palmeira	Tombamento lateral	Desalinhamento do movimento vertical	-	80	16					
Sistema de propulsão													
	RPM	Árvore dimensionada adequadamente	Não possuir torque suficiente	Não se movimentar	Conjunto de pinhão e coroa inadequado (muito veloz baixo torque)	Adoção da relação de transmissão padrão	100	3					
			Velocidade excessiva	Difícil controle da operação	Conjunto de pinhão e coroa inadequado (muito veloz baixo torque)	Adoção do conjunto de transmissão, roda, pinhão, coroa padrão	144	2					
	Guia da corrente	Manter a corrente montada na árvore de transmissão	Soltar a corrente	Perder o sistema de propulsão	Desalinhamento da árvore de transmissão	-	240	24					
Frenagem		Controlar a velocidade de descida	Excesso de velocidade	Choque com o solo	Deslocamento descontrolado	Freio motor	50	50					

O Sistema de controle embora tenha passado pelo mesmo processo de avaliação e desenvolvimento não apresentou índices de risco ao usuário superiores a 50, tornando-se não prioritário na hierarquia de intervenções.

Nota-se o decréscimo dos valores de NPR1 para NPR2 devido as alterações realizadas nos sistemas conferindo um amadurecimento do projeto.

4. CONCLUSÕES

A ferramenta avaliação FMEA associada ao protótipo de testes foram fundamentais para o direcionamento do projeto, por se tratar de uma tecnologia ainda em desenvolvimento, os contrastes entre as expectativas do projeto inicial formatado em ferramenta CAD e a realidade dos fenômenos observados através do protótipo físico final, serão atenuados pela técnica FMEA.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BERTOLDI, T.L.; MEDEIROS, F.A. **Açaí juçara: sistemas de produção e métodos de colheita no sul do brasil**. In: 10° SIIEPE – SEMANA INTEGRADA UFPEL 2024, XXVI ENPÓS., Pelotas, 2023. Anais, Pelotas.

ROZENFELD, H; AMARAL, D.C.; ALLIPRANDINI, D.H.; FORCELLINI, F.; TOLEDO, J.C.; SCALICE, R. SILVA, S.L. **Gestão de desenvolvimento de produto: uma referência para a melhoria do processo**. São Paulo: Saraiva, 2006.

SILVA, A. J. B. da; SEVALHO, E. de S; MIRANDA, P. de A. **Potencial das palmeiras nativas da Amazônia Brasileira para a bioeconomia: análise em rede da produção científica e tecnológica**. Ciênc. Florest. v. 31, n. 2, p. 1020-1046, abr./jun. 2021. Disponível em: https://www.scielo.br/j/cflo/a/Y6qcR5ZjzFy8zbXBqXgx3Zp/?lang=pt. Acesso 15 set 2022.

SOUZA, Ruy Victor Barbosa de. **Aplicação do método FMEA para priorização de ações de melhoria em fluxos de processos**. 2012. Dissertação (Mestrado em Processos e Gestão de Operações) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2012. doi:10.11606/D.18.2012.tde-15012013-103231. Acesso em: 04-09-2024.

TOLEDO, J. C.; BORRÁS, M. A.; MERGULÃO, R. C.; MENDES, G. H. S. **Qualidade Gestão e métodos**. Rio de Janeiro: Editora Ltc, 2013.

WILTGEN, F. Fabricação de protótipos para testes experimentais. **Revista de Engenharia e Tecnologia**, ISSN 2176-7270V. v.14, n. 2, p. 9-22, junho/2022. Vianna, S.A. **Euterpe in Flora e Funga do Brasil**. Jardim Botânico do Rio de Janeiro. Disponível em: https://floradobrasil.jbrj.gov.br/FB15712>. Acesso em: 14 mai. 2023.